[1] Jenkyns H C. Geochemistry of oceanic anoxic events[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q03004.
[2] Foster G L, Hull P, Lunt D J, et al. Placing our current ‘hyperthermal’ in the context of rapid climate change in our geological past[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 376(2130): 20170086.
[3] Hu F Z, Fu X G, Lin L, et al. Marine Late Triassic-Jurassic carbon-isotope excursion and biological extinction records: New evidence from the Qiangtang Basin, eastern tethys[J]. Global and Planetary Change, 2020, 185: 103093.
[4] Korte C, Hesselbo S P. Shallow marine carbon and oxygen isotope and elemental records indicate icehouse-greenhouse cycles during the Early Jurassic[J]. Paleoceanography, 2011, 26(4): PA4219.
[5] Franceschi M, Dal Corso J, Posenato R, et al. Early Pliensbachian (Early Jurassic) C-isotope perturbation and the diffusion of the Lithiotis Fauna: Insights from the western tethys[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 410: 255-263.
[6] Franceschi M, Dal Corso J, Cobianchi M, et al. Tethyan carbonate platform transformations during the Early Jurassic (Sinemurian-Pliensbachian, southern Alps): Comparison with the Late Triassic Carnian Pluvial Episode[J]. GSA Bulletin, 2019, 131(7/8): 1255-1275.
[7] Baghli H, Mattioli E, Spangenberg J E, et al. Early Jurassic climatic trends in the south-tethyan margin[J]. Gondwana Research, 2020, 77: 67-81.
[8] Storm M S, Hesselbo S P, Jenkyns H C, et al. Orbital pacing and secular evolution of the Early Jurassic carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(8): 3974-3982.
[9] Schöllhorn I, Adatte T, Charbonnier G, et al. Pliensbachian environmental perturbations and their potential link with volcanic activity: Swiss and British geochemical records[J]. Sedimentary Geology, 2020, 406: 105665.
[10] Han Z, Hu X M, Boudagher-Fadel M, et al. Early Jurassic carbon-isotope perturbations in a shallow-water succession from the tethys Himalaya, southern hemisphere[J]. Newsletters on Stratigraphy, 2021, 54(4): 461-481.
[11] Littler K, Hesselbo S P, Jenkyns H C. A carbon-isotope perturbation at the Pliensbachian-Toarcian boundary: Evidence from the Lias Group, NE England[J]. Geological Magazine, 2010, 147(2): 181-192.
[12] Peti L, Thibault N, Clémence M E, et al. Sinemurian-Pliensbachian calcareous nannofossil biostratigraphy and organic carbon isotope stratigraphy in the Paris Basin: Calibration to the ammonite biozonation of NW Europe[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 142-161.
[13] Mercuzot M, Pellenard P, Durlet C, et al. Carbon-isotope events during the Pliensbachian (Lower Jurassic) on the African and European margins of the NW Tethyan Realm[J]. Newsletters on Stratigraphy, 2020, 53(1): 41-69.
[14] Suan G, Mattioli E, Pittet B, et al. Secular environmental precursors to Early Toarcian (Jurassic) extreme climate changes[J]. Earth and Planetary Science Letters, 2010, 290(3/4): 448-458.
[15] Korte C, Hesselbo S P, Ullmann C V, et al. Jurassic climate mode governed by ocean gateway[J]. Nature Communications, 2015, 6(1): 10015.
[16] Ruhl M, Hesselbo S P, Hinnov L, et al. Astronomical constraints on the duration of the Early Jurassic Pliensbachian stage and global climatic fluctuations[J]. Earth and Planetary Science Letters, 2016, 455: 149-165.
[17] Legarreta L, Uliana M A. The Jurassic succession in west-central Argentina: Stratal patterns, sequences and paleogeographic evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 120(3/4): 303-330.
[18] Hesselbo S P, Jenkyns H C. British Lower Jurassic sequence stratigraphy[M]//de Graciansky P C, Hardenbol J, Jacquin T, et al. Mesozoic and Cenozoic sequence stratigraphy of European Basins. Tulsa (Oklahoma): SEPM Society for Sedimentary Geology, 1999: 561-581.
[19] Haq B U. Jurassic sea-level variations: A reappraisal[J]. GSA Today, 2018, 28(1): 4-10.
[20] Han Z, Hu X M, Li J, et al. Jurassic carbonate microfacies and relative sea-level changes in the tethys Himalaya (southern Tibet)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 456: 1-20.
[21] Woodfine R G, Jenkyns H C, Sarti M, et al. The response of two tethyan carbonate platforms to the early Toarcian (Jurassic) oceanic anoxic event: Environmental change and differential subsidence[J]. Sedimentology, 2008, 55(4): 1011-1028.
[22] Franceschi M, Jin X, Shi Z Q, et al. High-resolution record of multiple organic carbon-isotope excursions in lacustrine deposits of upper Sinemurian through Pliensbachian (Early Jurassic) from the Sichuan Basin, China[J]. GSA Bulletin, 2023, 135(1/2): 3-17.
[23] Krencker F N, Fantasia A, Danisch J, et al. Two-phased collapse of the shallow-water carbonate factory during the Late Pliensbachian-Toarcian driven by changing climate and enhanced continental weathering in the northwestern Gondwana margin[J]. Earth-Science Reviews, 2020, 208: 103254.
[24] Fraser N M, Bottjer D J, Fischer A G. Dissecting “Lithiotis” bivalves: Implications for the Early Jurassic reef eclipse[J]. Palaios, 2004, 19(1): 51-67.
[25] Posenato R, Masetti D. Environmental control and dynamics of Lower Jurassic bivalve build-ups in the Trento Platform (southern Alps, Italy)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 361-362: 1-13.
[26] Leinfelder R R, Schmid D U, Nose M, et al. Jurassic reef patterns-The expression of a changing globe[M]//Kiessling W, Flügel E, Golonka J. Phanerozoic Reef Patterns. Tulsa (Oklahoma): SEPM Society for Sedimentary Geology, 2002: 465-520.
[27] Trecalli A, Spangenberg J, Adatte T, et al. Carbonate platform evidence of ocean acidification at the onset of the early Toarcian oceanic anoxic event[J]. Earth and Planetary Science Letters, 2012, 357-358(4): 214-225.
[28] Posenato R, Bassi D, Trecalli A, et al. Taphonomy and evolution of Lower Jurassic lithiotid bivalve accumulations in the Apennine Carbonate Platform (southern Italy)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 489: 261-271.
[29] 尹安. 喜马拉雅造山带新生代构造演化:沿走向变化的构造几何形态、剥露历史和前陆沉积的约束[J]. 地学前缘,2006,13(5):416-515.

Yin An. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and forel and sedimentation[J]. Earth Science Frontiers, 2006, 13(5): 416-515.
[30] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.
[31] Burg J P, Bouilhol P. Timeline of the South Tibet-Himalayan belt: The geochronological record of subduction, collision, and underthrusting from zircon and monazite U-Pb ages[J]. Canadian Journal of Earth Sciences, 2019, 56(12): 1318-1332.
[32] Golonka J. Phanerozoic paleoenvironment and paleolithofacies maps. Mesozoic[J]. Geologia, 2007, 33: 211-264
[33] Han Z, Hu X M, Kemp D B, et al. Carbonate-platform response to the Toarcian Oceanic Anoxic Event in the southern hemisphere: Implications for climatic change and biotic platform demise[J]. Earth and Planetary Science Letters, 2018, 489: 59-71.
[34] Jadoul F, Berra F, Garzanti E. The tethys Himalayan passive margin from Late Triassic to Early Cretaceous (south Tibet)[J]. Journal of Asian Earth Sciences, 1998, 16(2/3): 173-194.
[35] Garzanti E. Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin[J]. Journal of Asian Earth Sciences, 1999, 17(5/6): 805-827.
[36] 阴家润,万晓樵. 侏罗纪菊石形态—特提斯喜马拉雅海的深度标志[J]. 古生物学报,1996,35(6):734-751.

Yin Jiarun, Wan Xiaoqiao. Jurassic ammonite morphotypes as water-depth indicator of tethys-Himalaya sea[J]. Acta Palaeontologica Sinica, 1996, 35(6): 734-751.
[37] Sciunnach D, Garzanti E. Subsidence history of the Tethys Himalaya[J]. Earth-Science Reviews, 2012, 111(1/2): 179-198.
[38] 李金和,孙苑迪,夏祥. 西藏札达地区早侏罗世双壳类Lithiotis生物岩礁的发现及其地质意义[J]. 地球,2013(8):52-53.

Li Jinhe, Sun Yuandi, Xia Xiang. Discovery of the Early Jurassic Lithiotis (Bivalvia) bioherm in Zhada area in Tibet and its geological implications[J]. The Earth, 2013(8): 52-53.
[39] 张双增,季金和,张宏宝,等. 中华人民共和国区域地质调查报告:日新幅(H44C001001)、札达县幅(H44C002001)、姜叶马幅(H44C002002)比例尺1∶250000 [M]. 北京:地质出版社,2015:1-224.

Zhang Shuangzeng, Ji Jinhe, Zhang Hongbao, et al. Regional geological survey report of the People's Republic of China: Rixin sheet (H44C001001), Zanda county sheet (H44C002001), Jiangyema sheet (H44C002002), scale 1:250,000 [M]. Beijing: Geological Publishing House, 2015: 1-224.
[40] Wignall P B, Hallam A, Newton R J, et al. An eastern tethyan (Tibetan) record of the Early Jurassic (Toarcian) mass extinction event[J]. Geobiology, 2006, 4(3): 179-190.
[41] Newton R J, Reeves E P, Kafousia N, et al. Low marine sulfate concentrations and the isolation of the European epicontinental sea during the Early Jurassic[J]. Geology, 2011, 39(1): 7-10..
[42] Loeblich A R, Tappan H. Foraminiferal genera and their classification[M]. New York: Springer, 1988.
[43] Boudagher-Fadel M K. Evolution and geological significance of larger benthic foraminifera[M]. Amsterdam: Elsevier, 2008: 1-544.
[44] Boudagher-Fadel M K. Evolution and geological significance of larger benthic foraminifera[M]. London: UCL Press, 2018: 1-693.
[45] Riding R. Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories[J]. Earth-Science Reviews, 2002, 58(1/2): 163-231.
[46] Trygonis V, Sini M. PhotoQuad: A dedicated seabed image processing software, and a comparative error analysis of four photoquadrat methods[J]. Journal of Experimental Marine Biology and Ecology, 2012, 424-425: 99-108.
[47] Solomon M. Counting and sampling errors in modal analysis by point counter[J]. Journal of Petrology, 1963, 4(3): 367-382.
[48] Eriksson M E, Lindskog A, Calner M, et al. Biotic dynamics and carbonate microfacies of the conspicuous Darriwilian (Middle Ordovician) 'Täljsten' interval, south-central Sweden[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 367-368: 89-103.
[49] Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. 2nd ed. Berlin Heidelberg: Springer, 2010: 1-984.
[50] Barattolo F, Romano R. Shallow carbonate platform bioevents during the Upper Triassic-Lower Jurassic: An evolutive interpretation[J]. Italian Journal of Geosciences, 2005, 124(1): 123-142.
[51] Boudagher-Fadel M K, Bosence D W J. Early Jurassic benthic foraminiferal diversification and biozones in shallow-marine carbonates of western tethys[J]. Senckenbergiana lethaea, 2007, 87(1): 1-39.
[52] Brame H M R, Martindale R C, Ettinger N P, et al. Stratigraphic distribution and paleoecological significance of Early Jurassic (Pliensbachian-Toarcian) lithiotid-coral reefal deposits from the central High Atlas of Morocco[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 514: 813-837.
[53] Oehlert A M, Swart P K. Interpreting carbonate and organic carbon isotope covariance in the sedimentary record[J]. Nature Communications, 2014, 5: 4672.
[54] Suan G, van de Schootbrugge B, Adatte T, et al. Calibrating the magnitude of the Toarcian carbon cycle perturbation[J]. Paleoceanography, 2015, 30(5): 495-509.
[55] Fike D A, Grotzinger J P, Pratt L M, et al. Oxidation of the Ediacaran ocean[J]. Nature, 2006, 444(7120): 744-747
[56] Grotzinger J P, Fike D A, Fischer W W. Enigmatic origin of the largest-known carbon isotope excursion in Earth's history[J]. Nature Geoscience, 2011, 4(5): 285-292.
[57] Rose C V, Swanson-Hysell N L, Husson J M, et al. Constraints on the origin and relative timing of the Trezona δ13C anomaly below the end-Cryogenian glaciation[J]. Earth and Planetary Science Letters, 2012, 319-320: 241-250.
[58] Brasier M D, Magaritz M, Corfield R, et al. The carbon-and oxygen-isotope record of the Precambrian–Cambrian boundary interval in China and Iran and their correlation[J]. Geological Magazine, 1990, 127(4): 319-332.
[59] Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1/2/3/4): 27-49.
[60] Knoll A H, Hayes J M, Kaufman A J, et al. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland[J]. Nature, 1986, 321(6073): 832-838.
[61] Laporte D F, Holmden C, Patterson W P, et al. Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 276(1/2/3/4): 182-195.
[62] Swanson-Hysell N L, Rose C V, Calmet C C, et al. Cryogenian glaciation and the onset of carbon-isotope decoupling[J]. Science, 2010, 328(5978): 608-611.
[63] Meyer K M, Yu M, Lehrmann D, et al. Constraints on Early Triassic carbon cycle dynamics from paired organic and inorganic carbon isotope records[J]. Earth and Planetary Science Letters, 2013, 361: 429-435.
[64] van de Schootbrugge B, Mcarthur J M, Bailey T R, et al. Toarcian oceanic anoxic event: An assessment of global causes using belemnite C isotope records[J]. Paleoceanography, 2005, 20(3): PA3008.
[65] Rosales I, Quesada S, Robles S. Geochemical arguments for identifying second-order sea-level changes in hemipelagic carbonate ramp deposits[J]. Terra Nova, 2006, 18(4): 233-240.
[66] Price G D, Baker S J, Vandevelde J, et al. High-resolution carbon cycle and seawater temperature evolution during the Early Jurassic (Sinemurian-Early Pliensbachian)[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(10): 3917-3928.
[67] Caruthers A H, Smith P L, Gröcke D R. The Pliensbachian-Toarcian (Early Jurassic) extinction: A North American perspective[M]//Keller G, Kerr A C. Volcanism, impacts, and mass extinctions: Causes and effects. Boulder: Geological Society of America, 2014, 505: 225-243.
[68] de Lena L F, Taylor D, Guex J, et al. The driving mechanisms of the carbon cycle perturbations in the Late Pliensbachian (Early Jurassic)[J]. Scientific Reports, 2019, 9(1): 18430.
[69] Silva R L, Duarte L V, Comas-Rengifo M J, et al. Update of the carbon and oxygen isotopic records of the Early-Late Pliensbachian (Early Jurassic, ~187Ma): Insights from the organic-rich hemipelagic series of the Lusitanian Basin (Portugal)[J]. Chemical Geology, 2011, 283(3/4): 177-184.
[70] Silva R L, Duarte L V. Organic matter production and preservation in the Lusitanian Basin (Portugal) and Pliensbachian climatic hot snaps[J]. Global and Planetary Change, 2015, 131: 24-34.
[71] Han Z, Hu X M, He T C, et al. Early Jurassic long-term oceanic sulfur-cycle perturbations in the Tibetan Himalaya[J]. Earth and Planetary Science Letters, 2022, 578: 117261.
[72] Harazim D, van de Schootbrugge B, Sorichter K, et al. Spatial variability of watermass conditions within the European Epicontinental Seaway during the Early Jurassic (Pliensbachian-Toarcian)[J]. Sedimentology, 2013, 60(2): 359-390.
[73] Gómez J J, Comas-Rengifo M J, Goy A. Palaeoclimatic oscillations in the Pliensbachian (Lower Jurassic) of the Asturian Basin (northern Spain)[J]. Climate of the Past Discussions, 2015, 11(4): 4039-4076.
[74] Arabas A, Schlögl J, Meister C. Early Jurassic carbon and oxygen isotope records and seawater temperature variations: Insights from marine carbonate and belemnite rostra (Pieniny Klippen Belt, Carpathians)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 119-135.
[75] Bougeault C, Pellenard P, Deconinck J F, et al. Climatic and palaeoceanographic changes during the Pliensbachian (Early Jurassic) inferred from clay mineralogy and stable isotope (C-O) geochemistry (NW Europe)[J]. Global and Planetary Change, 2017, 149: 139-152.
[76] Price G D. The evidence and implications of polar ice during the Mesozoic[J]. Earth-Science Reviews, 1999, 48(3): 183-210.
[77] Rogov M A, Zakharov V A. Jurassic and Lower Cretaceous glendonite occurrences and their implication for Arctic paleoclimate reconstructions and stratigraphy[J]. Earth Science Frontiers, 2010, 17(Suppl.1): 345-347.
[78] Teichert B M A, Luppold F W. Glendonites from an Early Jurassic methane seep:Climate or methane indicators?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 390: 81-93.
[79] Philippe M, Puijalon S, Suan G, et al. The palaeolatitudinal distribution of fossil wood genera as a proxy for European Jurassic terrestrial climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 373-381.
[80] Steinthorsdottir M, Vajda V. Early Jurassic (Late Pliensbachian) CO2 concentrations based on stomatal analysis of fossil conifer leaves from eastern Australia[J]. Gondwana Research, 2015, 27(3): 932-939.
[81] Ruebsam W, Mayer B, Schwark L. Cryosphere carbon dynamics control early Toarcian global warming and sea level evolution[J]. Global and Planetary Change, 2019, 172: 440-453.
[82] Hesselbo S P, Jenkyns H C, Duarte L V, et al. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal)[J]. Earth and Planetary Science Letters, 2007, 253(3/4): 455-470.
[83] Ait-Itto F Z, Price G D, Addi A A, et al. Bulk-carbonate and belemnite carbon-isotope records across the Pliensbachian-Toarcian boundary on the northern margin of Gondwana (Issouka, Middle Atlas, Morocco)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 128-136.
[84] Izumi K, Kemp D B, Itamiya S, et al. Sedimentary evidence for enhanced hydrological cycling in response to rapid carbon release during the early Toarcian oceanic anoxic event[J]. Earth and Planetary Science Letters, 2018, 481: 162-170.
[85] Fantasia A, Föllmi K B, Adatte T, et al. The Toarcian oceanic anoxic event in southwestern Gondwana: An example from the Andean Basin, northern Chile[J]. Journal of the Geological Society, 2018, 175(6): 883-902.
[86] Bodin S, Fantasia A, Krencker F N, et al. More gaps than record! A new look at the Pliensbachian/Toarcian boundary event guided by coupled chemo-sequence stratigraphy[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 610: 111344.
[87] Krencker F N, Fantasia A, El Ouali M, et al. The effects of strong sediment-supply variability on the sequence stratigraphic architecture: Insights from early Toarcian carbonate factory collapses[J]. Marine and Petroleum Geology, 2022, 136: 105469.
[88] Dera G, Neige P, Dommergues J L, et al. High-resolution dynamics of Early Jurassic marine extinctions: The case of Pliensbachian-Toarcian ammonites (Cephalopoda)[J]. Journal of the Geological Society, 2010, 167(1): 21-33.
[89] Takahashi A. Diversity changes in Cretaceous inoceramid bivalves of Japan[J]. Paleontological Research, 2005, 9(3): 217-232.