[1] National Research Council. The dynamics of sedimentary basins[M]. Washington: National Academy of Sciences, 1997: 1-43.
[2] Wolf K H, Chilingar G V. Diagenesis Ⅳ[M]. Amsterdam: Elsevier, 1994: 1-519.
[3] 李忠,刘嘉庆. 沉积盆地成岩作用的动力机制与时空分布研究若干问题及趋向[J]. 沉积学报,2009,27(5):837-848.

Li Zhong, Liu Jiaqing. Key problems and research trend of diagenetic geodynamic mechanism and spatio-temporal distribution in sedimentary basins[J]. Acta Sedimentologica Sinica, 2009, 7(5): 837-848.
[4] Meyer D, Zarra L, Rains D, et al. Emergence of the Lower Tertiary Wilcox trend in the deepwater gulf of Mexico[J]. World Oil, 2005, 226(5): 72-77.
[5] Mcdonnell A, Loucks R G, Galloway W E. Paleocene to Eocene deep-water slope canyons, western gulf of Mexico: Further insights for the provenance of deep-water offshore Wilcox Group plays[J]. AAPG Bulletin, 2008, 92(9): 1169-1189.
[6] Mancini E A, Li P, Goddard D A, et al. Mesozoic (Upper Jurassic-Lower Cretaceous) deep gas reservoir play, central and eastern Gulf coastal plain[J]. AAPG Bulletin, 2008, 92(3): 283-308.
[7] Ehrenberg S N, Nadeau P H, Steen Ø. Petroleum reservoir porosity versus depth: Influence of geological age[J]. AAPG Bulletin, 2009, 93(10): 1281-1296.
[8] Ehrenberg S N, Nadeau P H. Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships[J]. AAPG Bulletin, 2005, 89(4): 435-445.
[9] 马永生,蔡勋育,赵培荣. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘,2011,18(4):181-192.

Ma Yongsheng, Cai Xunyu, Zhao Peirong. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J]. Earth Science Frontiers, 2011, 18(4): 181-192.
[10] 孙龙德,邹才能,朱如凯,等. 中国深层油气形成、分布与潜力分析[J]. 石油勘探与开发,2013,40(6):641-649.

Sun Longde, Zou Caineng, Zhu Rukai, et al. Formation, distribution and potential of deep hydrocarbon resources in China[J]. Petroleum Exploration and Development, 2013, 40(6): 641-649.
[11] 赵文智,胡素云,刘伟,等. 再论中国陆上深层海相碳酸盐岩油气地质特征与勘探前景[J]. 天然气工业,2014,34(4):1-9.

Zhao Wenzhi, Hu Suyun, Liu Wei, et al. Petroleum geological features and exploration prospect in deep marine carbonate strata onshore China: A further discussion[J]. Natural Gas Industry, 2014, 34(4): 1-9.
[12] 李阳,薛兆杰,程喆,等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,2020,25(1):45-57.

Li Yang, Xue Zhaojie, Cheng Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45-57.
[13] 李忠. 盆地深层流体—岩石作用与油气形成研究前沿[J]. 矿物岩石地球化学通报,2016,35(5):807-816.

Li Zhong. Research frontiers of fluid-rock interaction and oil-gas formation in deep-buried basins[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(5): 807-816.
[14] Evenick J C. Glimpses into Earth’s history using a revised global sedimentary basin map[J]. Earth-Science Reviews, 2021, 215: 103564.
[15] 李忠. 盆地深层—超深层沉积成岩作用与油气储层形成分布[M]. 北京:科学出版社,2022:1-558.

Li Zhong. Sedimentary diagenesis and formation distribution of oil- gas reservoirs in deeply-ultra deeply buried basins, China[M]. Beijing: Science Press, 2022: 1-558.
[16] Loucks R G. Paleocave carbonate reservoirs: Origins, burial-depth modifications, spatial complexity, and reservoir implications[J]. AAPG Bulletin, 1999, 83(11): 1795-1834.
[17] Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
[18] Schieber J. Experimental testing of the transport-durability of shale lithics and its implications for interpreting the rock record[J]. Sedimentary Geology, 2016, 331: 162-169.
[19] Hall C D. Compositional and diagenetic controls on brittleness in organic siliceous mudrocks[M]//Camp W K, Milliken K L, Taylor K, et al. Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks. AAPG Memoir, 2019, 120: 103-120.
[20] Peng J W, Milliken K L, Fu Q, et al. Grain assemblages and diagenesis in organic-rich mudrocks, Upper Pennsylvanian Cline shale (Wolfcamp D), Midland Basin, Texas[J]. AAPG Bulletin, 2020, 104(7): 1593-1624.
[21] Camp W K, Milliken K L, Taylor K, et al. Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks[M]. AAPG Memoir, 2019, 120: 33-224.
[22] Munnecke A, Wright V P, Nohl T. The origins and transformation of carbonate mud during early marine burial diagenesis and the fate of aragonite: A stratigraphic sedimentological perspective[J]. Earth-Science Reviews, 2023, 239: 104366.
[23] Ghabezloo S, Sulem J, Guédon S, et al. Effective stress law for the permeability of a limestone[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 297-306.
[24] Zhou X J, Zeng Z W, Liu H. Stress-dependent permeability of carbonate rock and its implication to CO2 sequestration[C]//Proceedings of the 45th U.S. rock mechanics / geomechanics symposium. San Francisco: ARMA, 2011.
[25] Surdam R C, Boese S W, Crossey L J. The chemistry of secondary porosity[M]//McDonald D A, Surdam R C. Clastic diagenesis. Oklahoma, USA: American Association of Petroleum Geologists, 1984: 127-149.
[26] Mazzullo S J. Overview of porosity evolution in carbonate reservoirs[J]. Kansas Geological Society Bulletin, 2004, 79(1/2): 22-29.
[27] Borgund A E, Barth T. Generation of short-chain organic acids from crude oil by hydrous pyrolysis[J]. Organic Geochemistry, 1994, 21(8/9): 943-952.
[28] Seewald J S. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: Constraints from mineral buffered laboratory experiments[J]. Geochimica et Cosmochimica Acta, 2001, 65(10): 1641-1664.
[29] Seewald J S. Model for the origin of carboxylic acids in basinal brines[J]. Geochimica et Cosmochimica Acta, 2001, 65(21): 3779-3789.
[30] Xiao Y T, Whitaker F, Xu T F, et al. Reactive transport modeling: Applications in subsurface energy and environmental problems[M]. Hoboken: John Wiley & Sons, Inc., 2018.
[31] Allen P A, Armitage J J. Cratonic basins[M]//Busby C J, Azor A. Tectonics of sedimentary basins: Recent advances. Hoboken: Wiley, 2011: 602-620.
[32] Allen P A, Allen J R. Basin analysis: Principles and application to petroleum play assessment[M]. 3rd ed. Chichester: Wiley-Blackwell, 2013.
[33] Suppe J. Fluid overpressures and strength of the sedimentary upper crust[J]. Journal of Structural Geology, 2014, 69: 481-492.
[34] Davies G R, Smith L B. Structurally controlled hydrothermal dolomite reservoir facies: An overview[J]. AAPG Bulletin, 2006, 90(11): 1641-1690.
[35] Moretti M, Owen G, Tropeano M. Soft-sediment deformation induced by sinkhole activity in shallow marine environments: A fossil example in the Apulian foreland (southern Italy)[J]. Sedimentary Geology, 2011, 235(3/4): 331-342.
[36] Richard J, Sizun J P. Pressure solution-fracturing interactions in weakly cohesive carbonate sediments and rocks: Example of the synsedimentary deformation of the Campanian chalk from the Mons Basin (Belgium)[J]. Journal of Structural Geology, 2011, 33(2): 154-168.
[37] Petracchini L, Antonellini M, Billi A, et al. Fault development through fractured pelagic carbonates of the Cingoli anticline, Italy: Possible analog for subsurface fluid-conductive fractures[J]. Journal of Structural Geology, 2012, 45: 21-37.
[38] Mangenot X, Gasparrini M, Rouchon V, et al. Basin-scale thermal and fluid flow histories revealed by carbonate clumped isotopes (Δ47) -Middle Jurassic carbonates of the Paris Basin depocentre[J]. Sedimentology, 2018, 65(1): 123-150.
[39] 李忠,罗威,曾冰艳,等. 盆地多尺度构造驱动的流体—岩石作用及成储效应[J]. 地球科学,2018,43(10):3498-3510.

Li Zhong, Luo Wei, Zeng Bingyan, et al. Fluid-rock interactions and reservoir formation driven by multiscale structural deformation in basin evolution[J]. Earth Science, 2018, 43(10): 3498-3510.
[40] Chen W, Ghaith A, Partk A, et al. Diagenesis through coupled processes: Modeling approach, self-organization, and implications for exploration[M]//Meshri I D, Ortoleva P J. Prediction of reservoir quality through chemical modeling. Tulsa: AAPG Memoir, 1990: 103-130.
[41] Bachu S. Flow of formation waters, aquifer characteristics, and their relation to hydrocarbon accumulations, northern Alberta Basin[J]. AAPG Bulletin, 1997, 81(5): 712-733.
[42] Kendrick M A, Burgess R, Leach D, et al. Hydrothermal fluid origins in mississippi valley-type ore districts: Combined noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analysis of fluid inclusions from the illinois-kentucky fluorspar district, viburnum trend, and tri-state districts, midcontinent United States[J]. Economic Geology, 2002, 97(3): 453-469.
[43] Loucks R G. A review of coalesced, collapsed-paleocave systems and associated suprastratal deformation[J]. Acta Carsologica, 2007, 36(1): 121-132.
[44] Bjørlykke K, Jahren J. Open or closed geochemical systems during diagenesis in sedimentary basins: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs[J]. AAPG Bulletin, 2012, 96(12): 2193-2214.
[45] Surdam Ronald C, Crossey L J, Hagen E S, et al. Organic-inorganic interactions and sandstone diagenesis[J]. AAPG Bulletin, 1989, 73(1): 1-23.
[46] Worden R H, Benshatwan M S, Potts G J, et al. Basin-scale fluid movement patterns revealed by veins: Wessex Basin, UK[J]. Geofluids, 2016, 16(1): 149-174.
[47] Cai C F, Hu G Y, Li H X, et al. Origins and fates of H2S in the Cambrian and Ordovician in Tazhong area: Evidence from sulfur isotopes, fluid inclusions and production data[J]. Marine and Petroleum Geology, 2015, 67: 408-418.
[48] Alexandrov E N, Kuznetsov N M, Brusova G P, et al. Supercritical fluid state of hydrocarbon-water fluids in a porous medium and optimization of fluid release from pores[J]. Russian Journal of Physical Chemistry B, 2011, 5(8): 1240-1244.
[49] Miller Q R S, Kaszuba J P, Schaef H T, et al. Experimental study of organic ligand transport in supercritical CO2 fluids and impacts to silicate reactivity[J]. Energy Procedia, 2014, 63: 3225-3233.
[50] Jobe T D, Csutak S, Eichman S L, et al. High-resolution multispectral analysis of organic-rich mudstones[M]//Camp W K, Milliken K L, Taylor K, et al. Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks. AAPG Memoir,2019, 120: 19-32.
[51] Valentine B J, Hackley P C. Applications of correlative light and electron microscopy (CLEM) to organic matter in the North American shale petroleum systems[M]//Camp W K, Milliken K L, Taylor K, et al. Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks. AAPG Memoir, 2019, 120: 1-18.
[52] Gasparrini M, Morad D, Mangenot X, et al. Dolomite recrystallization revealed by Δ47/U-Pb thermochronometry in the Upper Jurassic Arab Formation, United Arab Emirates[J]. Geology, 2023, 51(5): 471-475.
[53] Balitsky V S, Pironon J, Penteley S V, et al. Phase states of water-hydrocarbon fluid systems at elevated and high temperatures and pressures: Evidence from experimental data[J]. Doklady Earth Sciences, 2011, 437(1): 383-386.
[54] Shanley K W, Cluff R M. The evolution of pore-scale fluid-saturation in low-permeability sandstone reservoirs[J]. AAPG Bulletin, 2015, 99(10): 1957-1990.
[55] Connolly J A D, Podladchikov Y Y. Temperature-dependent viscoelastic compaction and compartmentalization in sedimentary basins[J]. Tectonophysics, 2000, 324(3): 137-168.
[56] Tigert V, Al-Shaieb Z. Pressure seals: Their diagenetic banding patterns[J]. Earth-Science Reviews, 1990, 29(1/2/3/4): 227-240.
[57] Laubach S E, Eichhubl P, Hilgers C, et al. Structural diagenesis[J]. Journal of Structural Geology, 2010, 32 (12): 1866-1872.
[58] 李忠,王清晨,王道轩,等. 晚新生代天山隆升与库车坳陷构造转换的沉积约束[J]. 沉积学报,2003,21(1):38-45.

Li Zhong, Wang Qingchen, Wang Daoxuan, et al. Depositional record constraints on Late Cenozoic uplift of tianshan and tectonic transformation in Kuqa Depression, west China[J]. Acta Sedimentologica Sinica, 2003, 21(1): 38-45.
[59] 中国矿物岩石地球化学学会沉积学专业委员会,中国地质学会沉积地质专业委员会. 中国沉积学若干领域的回顾与展望:庆祝《沉积学报》创刊二十周年[J]. 沉积学报,2003,21(1):1-7.

The Committee of Sedimentology Branch, MPGSC, The Committee of Sedimentary Geology Branch, GSC. Review and prospect for some research fields of sedimentology in China[J]. Acta Sedimentologica Sinica, 2003, 21(1): 1-7.
[60] 李忠,徐建强,高剑. 盆山系统沉积学:兼论华北和塔里木地区研究实例[J]. 沉积学报,2013,31(5):757-772.

Li Zhong, Xu Jianqiang, Gao Jian. Basin-range system sedimentology and case studies in North China and Tarim areas, China[J]. Acta Sedimentologica Sinica, 2013, 31(5): 757-772.