[1] Warren J. Dolomite: Occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1/2/3): 1-81.
[2] 陈代钊,钱一雄. 深层—超深层白云岩储集层:机遇与挑战[J]. 古地理学报,2017,19(2):187-196.

Chen Daizhao, Qian Yixiong. Deep or super-deep dolostone reservoirs: Opportunities and challenges[J]. Journal of Palaeogeography, 2017, 19(2): 187-196.
[3] 文华国,霍飞,郭佩,等. 白云岩—蒸发岩共生体系研究进展及展望[J]. 沉积学报,2021,39(6):1319-1343.

Wen Huaguo, Huo Fei, Guo Pei, et al. Advances and prospects of dolostone-evaporite paragenesis system[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1319-1343.
[4] 何治亮,马永生,张军涛,等. 中国的白云岩与白云岩储层:分布、成因与控制因素[J]. 石油与天然气地质,2020,41(1):1-14.

He Zhiliang, Ma Yongsheng, Zhang Juntao, et al. Distribution, genetic mechanism and control factors of dolomite and dolomite reservoirs in China[J]. Oil & Gas Geology, 2020, 41(1): 1-14.
[5] 马锋,杨柳明,顾家裕,等. 世界白云岩油气田勘探综述[J]. 沉积学报,2011,29(5):1010-1021.

Ma Feng, Yang Liuming, Gu Jiayu, et al. The summary on exploration of the dolomite oilfields in the world[J]. Acta Sedimentologica Sinica, 2011, 29(5): 1010-1021.
[6] Allan J R, Wiggins W D. Dolomite reservoirs: Geochemical techniques for evaluating origin and distribution[J]. American Association of Petroleum Geologists, 1993, 36: 1-129.
[7] Ma Y S, Zhang S C, Guo T L, et al. Petroleum geology of the Puguang sour gas field in the Sichuan Basin, SW China[J]. Marine and Petroleum Geology, 2008, 25(4/5): 357-370.
[8] 马永生,蔡勋育,赵培荣,等. 四川盆地大中型天然气田分布特征与勘探方向[J]. 石油学报,2010,31(3):347-354.

Ma Yongsheng, Cai Xunyu, Zhao Peirong, et al. Distribution and further exploration of the large-medium sized gas fields in Sichuan Basin[J]. Acta Petrolei Sinica, 2010, 31(3): 347-354.
[9] 芦飞凡,谭秀成,王利超,等. 川中地区中二叠统栖霞组滩控岩溶型白云岩储层特征及主控因素[J]. 沉积学报,2021,39(2):456-469.

Lu Feifan, Tan Xiucheng, Wang Lichao, et al. Characteristics and controlling factors of dolomite reservoirs within shoal-controlled karst in the Middle Permian Qixia Formation, central Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(2): 456-469.
[10] 田兴旺,杨岱林,钟佳倚,等. 基于CT成像技术的白云岩储层微观表征:以川中磨溪—龙女寺台内地区震旦系灯影组四段为例[J]. 沉积学报,2021,39(5):1264-1274.

Tian Xingwang, Yang Dailin, Zhong Jiayi, et al. Microscopic characterization of dolomite reservoirs by CT imaging: A case study of the Dengsi Formation in Moxi-Longnvsi area, central Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1264-1274.
[11] 王勇,施泽进,孟兴平,等. 川东南龙王庙组埋藏及混合水白云岩化作用[J]. 沉积学报,2021,39(6):1517-1531.

Wang Yong, Shi Zejin, Meng Xingping, et al. Burial dolomitization and mixed water dolomitization in Longwangmiao Formation, southeastern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1517-1531.
[12] 马新华,杨雨,文龙,等. 四川盆地海相碳酸盐岩大中型气田分布规律及勘探方向[J]. 石油勘探与开发,2019,46(1):1-13.

Ma Xinhua, Yang Yu, Wen Long, et al. Distribution and exploration direction of medium-and large-sized marine carbonate gas fields in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(1): 1-13.
[13] 马永生,蔡勋育,赵培荣,等. 深层超深层碳酸盐岩优质储层发育机理和“三元控储”模式:以四川普光气田为例[J]. 地质学报,2010,84(8):1087-1094.

Ma Yongsheng, Cai Xunyu, Zhao Peirong, et al. Formation mechanism of deep-buried carbonate reservoir and its model of three-element controlling reservoir: A case study from the Puguang oilfield in Sichuan[J]. Acta Geologica Sinica, 2010, 84(8): 1087-1094.
[14] 赵文智,沈安江,郑剑锋,等. 塔里木、四川及鄂尔多斯盆地白云岩储层孔隙成因探讨及对储层预测的指导意义[J]. 中国科学(D辑):地球科学,2014,44(9):1925-1939.

Zhao Wenzhi, Shen Anjiang, Zheng Jianfeng, et al. The porosity origin of dolostone reservoirs in the Tarim, Sichuan and Ordos Basins and its implication to reservoir prediction[J]. Science China (Seri. D): Earth Sciences, 2014, 44(9): 1925-1939.
[15] 沈安江,赵文智,胡安平,等. 海相碳酸盐岩储集层发育主控因素[J]. 石油勘探与开发,2015,42(5):545-554.

Shen Anjiang, Zhao Wenzhi, Hu Anping, et al. Major factors controlling the development of marine carbonate reservoirs[J]. Petroleum Exploration and Development, 2015, 42(5): 545-554.
[16] Purser B H, Brown A, Aissaoui D M. Nature, origins and evolution of porosity in dolomites [M]//Purser B, Tucker M, Zenger D. Dolomites: A volume in honour of dolomieu. Oxford: Blackwell, 1994: 283-308.
[17] Hao F, Zhang X F, Wang C W, et al. The fate of CO2 derived from thermochemical sulfate reduction (TSR) and effect of TSR on carbonate porosity and permeability, Sichuan Basin, China[J]. Earth-Science Reviews, 2015, 141: 154-177.
[18] 马永生,蔡勋育,赵培荣. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘,2011,18(4):181-192.

Ma Yongsheng, Cai Xunyu, Zhao Peirong. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J]. Earth Science Frontiers, 2011, 18(4): 181-192.
[19] 乔占峰,张哨楠,沈安江,等. 塔里木和四川盆地白云岩规模优质储层形成与发育控制因素[J]. 石油与天然气地质,2022,43(1):92-104.

Qiao Zhanfeng, Zhang Shaonan, Shen Anjiang, et al. Controls on formation and development of large-sized high-quality dolomite reservoirs in the Tarim and Sichuan Basins[J]. Oil & Gas Geology, 2022, 43(1): 92-104.
[20] 潘立银,刘占国,李昌,等. 四川盆地东部下三叠统飞仙关组白云岩化作用及其与储集层发育的关系[J]. 古地理学报,2012,14(2):176-186.

Pan Liyin, Liu Zhanguo, Li Chang, et al. Dolomitization and its relationship with reservoir development of the Lower Triassic Feixianguan Formation in eastern Sichuan Basin[J]. Journal of Palaeogeography, 2012, 14(2): 176-186.
[21] 潘立银,郝毅,梁峰,等. 白云岩储层成因的激光原位U-Pb定年和同位素地球化学新证据:以四川盆地西北部中二叠统栖霞组白云岩储层为例[J]. 石油学报,2022,43(2):223-233.

Pan Liyin, Hao Yi, Liang Feng, et al. New evidence of laser in-situ U-Pb dating and isotopic geochemistry for the genesis of dolomite reservoir: A case study of dolomite reservoir from Middle Permian Qixia Formation in northwestern Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(2): 223-233.
[22] 李明隆,谭秀成,罗冰,等. 四川盆地西北部中二叠统栖霞组相控早期高频暴露岩溶特征及启示[J]. 中国石油勘探,2020,25(3):66-82.

Li Minglong, Tan Xiucheng, Luo Bing, et al. Characteristics of facies-controlled and early high-frequency exposed karstificationin the Qixia Formation of Middle Permian in the northwest of Sichuan Basin and its significance[J]. China Petroleum Exploration, 2020, 25(3): 66-82.
[23] Wang G W, Li P P, Hao F, et al. Dolomitization process and its implications for porosity development in dolostones: A case study from the Lower Triassic Feixianguan Formation, Jiannan area, eastern Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2015, 131: 184-199.
[24] Maliva R G, Budd D A, Clayton E A, et al. Insights into the dolomitization process and porosity modification in sucrosic dolostones, Avon Park Formation (Middle Eocene), east-central Florida, U.S.A.[J]. Journal of Sedimentary Research, 2011, 81(3): 218-232.
[25] 朱光有,张水昌,梁英波,等. TSR对深部碳酸盐岩储层的溶蚀改造:四川盆地深部碳酸盐岩优质储层形成的重要方式[J]. 岩石学报,2006,22(8):2182-2194.

Zhu Guangyou, Zhang Shuichang, Liang Yingbo, et al. Dissolution and alteration of the deep carbonate reservoirs by TSR: An important type of deep-buried high-quality carbonate reservoirs in Sichuan Basin[J]. Acta Petrologica Sinica, 2006, 22(8): 2182-2194.
[26] 朱光有,张水昌,梁英波. 四川盆地深部海相优质储集层的形成机理及其分布预测[J]. 石油勘探与开发,2006,33(2):161-166.

Zhu Guangyou, Zhang Shuichang, Liang Yingbo. Formation mechanism and distribution prediction of high-quality marine reservoir in deeper Sichuan Basin[J]. Petroleum Exploration and Development, 2006, 33(2): 161-166.
[27] Zhu D Y, Meng Q Q, Jin Z J, et al. Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim Basin, northwestern China[J]. Marine and Petroleum Geology, 2015, 59: 232-244.
[28] 王兴志,张帆,蒋志斌,等. 四川盆地东北部飞仙关组储层研究[J]. 地学前缘,2008,15(1):117-122.

Wang Xingzhi, Zhang Fan, Jiang Zhibin, et al. A study of Feixianguan reservoir in northeast Sichuan Basin[J]. Earth Science Frontiers, 2008, 15(1): 117-122.
[29] 张学丰,刘波,蔡忠贤,等. 白云岩化作用与碳酸盐岩储层物性[J]. 地质科技情报,2010,29(3):79-85.

Zhang Xuefeng, Liu Bo, Cai Zhongxian, et al. Dolomitization and carbonate reservoir formation[J]. Geological Science and Technology Information, 2010, 29(3): 79-85.
[30] Lippmann F. Sedimentary carbonate minerals[M]. New York: Springer, 1973: 1-228.
[31] Land L S. Failure to precipitate dolomite at 25℃ from dilute solution despite 1000-fold oversaturation after 32 years[J]. Aquatic Geochemistry, 1998, 4(3/4): 361-368.
[32] Moore C H. Carbonate reservoirs: Porosity evolution and diagenesis in a sequence stratigraphic framework[M]. New York: Elsevier, 2001: 1-340.
[33] Murray R C. Origin of porosity in carbonate rocks[J]. Journal of Sedimentary Research, 1960, 30(1): 59-84.
[34] Blanc P, Lassin A, Piantone P, et al. Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials[J]. Applied Geochemistry, 2012, 27(10): 2107-2116.
[35] Weyl P K. Porosity through dolomitization: Conservation-of-mass requirements[J]. Journal of Sedimentary Research, 1960, 30(1): 85-90.
[36] Zempolich W G, Hardie L A. Geometry of dolomite bodies within deep-water resedimented oolite of the Middle Jurassic Vajont limestone, Venetian Alps, Italy: Analogs for hydrocarbon reservoirs created through fault-related burial dolomitization[M]//Kupecz J A, Gluyas J G, Bloch S. Reservoir quality prediction in sandstones and carbonates. Tulsa, Okla: AAPG Memoirs, 1997: 127-162.
[37] Lucia F J, Major R P. Porosity evolution through hypersaline reflux dolomitization//Purser B, Tucker M, Zenger D. Dolomites: A volume in honour of dolomieu. Oxford: Blackwell, 1994: 325-341.
[38] 陈彦华,刘莺,孙妥. 白云化过程中岩石孔隙体积的变化[J]. 石油实验地质,1985,7(1):29-37.

Chen Yanhua, Liu Ying, Sun Tuo. Change of pore volume in dolomitization[J]. Petroleum Geology & Expeximent, 1985, 7(1): 29-37.
[39] Lucia F J. Origin and petrophysics of dolostone pore space[M]//Braithwaite C J R, Rizzi G, Darke G. The geometry and petrogenesis of dolomite hydrocarbon reservoirs. London: Geological Society, London, Special Publication, 2004, 235(1): 141-155.
[40] Morrow D W. Diagenesis 1. dolomite-Part 1: The chemistry of dolomitization and dolomite precipitation[J]. Geoscience Canada, 1982, 9(1): 5-13.
[41] Hardie L A. Dolomitization: A critical view of some current views[J]. Journal of Sedimentary Research, 1987, 57(1): 166-183.
[42] Land L S. The origin of massive dolomite[J]. Journal of Geological Education, 1985, 33(2): 112-125.
[43] Lazar B, Starinsky A, Katz A, et al. The carbonate system in hypersaline solutions: Alkalinity and CaCO3 solubility of evaporated seawater[J]. Limnology and Oceanography, 1983, 28(5): 978-986.
[44] Sun S Q. Skeletal aragonite dissolution from hypersaline seawater: A hypothesis[J]. Sedimentary Geology, 1992, 77(3/4): 249-257.
[45] Sun S Q. Dolomite reservoirs: Porosity evolution and reservoir characteristics[J]. AAPG Bulletin, 1995, 79(2): 186-204.
[46] Machel H G. Concepts and models of dolomitization: A critical reappraisal[M]//Braithwaite C J R, Rizzi G, Darke G. The geometry and petrogenesis of dolomite hydrocarbon reservoirs. London: Geological Society, London, Special Publication, 2004, 235(1): 7-63.
[47] Landes K K. Porosity through dolomitization[J]. AAPG Bulletin, 1946, 30(3): 305-318.
[48] Wendte J. Origin of molds in dolostones formed by the dissolution of calcitic grains: Evidence from the Swan Hills Formation in west-central Alberta and other Devonian formations in Alberta and northeastern British Columbia[J]. Bulletin of Canadian Petroleum Geology, 2006, 54(2): 91-109.
[49] Jonas L, Müller T, Dohmen R, et al. Transport-controlled hydrothermal replacement of calcite by Mg-carbonates[J]. Geology, 2015, 43(9): 779-782.
[50] Zempolich W G, Baker P A. Experimental and natural mimetic dolomitization of aragonite ooids[J]. Journal of Sedimentary Research, 1993, 63(4): 596-606.
[51] Xia F, Brugger J, Ngothai Y, et al. Three-dimensional ordered arrays of zeolite nanocrystals with uniform size and orientation by a pseudomorphic coupled dissolution-reprecipitation replacement route[J]. Crystal Growth & Design, 2009, 9(11): 4902-4906.
[52] Xia F, Brugger J, Chen G R, et al. Mechanism and kinetics of pseudomorphic mineral replacement reactions: A case study of the replacement of pentlandite by violarite[J]. Geochimica et Cosmochimica Acta, 2009, 73(7): 1945-1969.
[53] Putnis C V, Tsukamoto K, Nishimura Y. Direct observations of pseudomorphism: Compositional and textural evolution at a fluid-solid interface[J]. American Mineralogist, 2005, 90(11/12): 1909-1912.
[54] Budd D A, Mathias W D. Formation of lateral patterns in rock properties by dolomitization: Evidence from a Miocene reaction front (Bonaire, Netherlands Antilles)[J]. Journal of Sedimentary Research, 2015, 85(9): 1082-1101.
[55] Sibley D F. Secular changes in the amount and texture of dolomite[J]. Geology, 1991, 19(2): 151-154.
[56] Gabellone T, Whitaker F. Secular variations in seawater chemistry controlling dolomitization in shallow reflux systems: Insights from reactive transport modelling[J]. Sedimentology, 2016, 63(5): 1233-1259.
[57] 黄擎宇,刘伟,张艳秋,等. 白云石化作用及白云岩储层研究进展[J]. 地球科学进展,2015,30(5):539-551.

Huang Qingyu, Liu Wei, Zhang Yanqiu, et al. Progress of research on dolomitization and dolomite reservoir[J]. Advances in Earth Science, 2015, 30(5): 539-551.
[58] Putnis A. Mineral replacement reactions[J]. Reviews in Mineralogy and Geochemistry, 2009, 70(1): 87-124.
[59] Usdowski E. Synthesis of dolomite and geochemical implications[M]//Purser B, Tucker M, Zenger D. Dolomites: A volume in honour of dolomieu. Oxford: Blackwell Scientific, 1994: 345-360.
[60] Jones G D, Xiao Y T. Dolomitization, anhydrite cementation, and porosity evolution in a reflux system: Insights from reactive transport models[J]. AAPG Bulletin, 2005, 89(5): 577-601.
[61] Al-Helal A B, Whitaker F F, Xiao Y T. Reactive transport modeling of brine reflux: Dolomitization, anhydrite precipitation, and porosity evolution[J]. Journal of Sedimentary Research, 2012, 82(2): 196-215.
[62] Garcia-Fresca B, Lucia F J, Sharp J M, et al. Outcrop-constrained hydrogeological simulations of brine reflux and early dolomitization of the Permian San Andres Formation[J]. AAPG Bulletin, 2012, 96(9): 1757-1781.
[63] Whitaker F F, Xiao Y T. Reactive transport modeling of early burial dolomitization of carbonate platforms by geothermal convection[J]. AAPG Bulletin, 2010, 94(6): 889-917.