[1] Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events: Causes and consequences[J]. Geologie en Mijnbouw, 1976, 55(3/4): 179-184.
[2] Jenkyns H C. Geochemistry of oceanic anoxic events[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q03004.
[3] Bralower T J. Volcanic cause of catastrophe[J]. Nature, 2008, 454(7202): 285-287.
[4] Trabucho Alexandre J, Tuenter E, Henstra G A, et al. The mid-cretaceous North Atlantic nutrient trap: Black shales and OAEs[J]. Paleoceanography, 2010, 25(4): PA4201.
[5] Valle B, Dal'Bó P F, Mendes M, et al. The expression of the Oceanic Anoxic Event 2 (OAE2) in the Northeast of Brazil (Sergipe-Alagoas Basin)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 529: 12-23.
[6] Scholz F, Beil S, Flögel S, et al. Oxygen minimum zone-type biogeochemical cycling in the Cenomanian-Turonian Proto-North Atlantic across Oceanic Anoxic Event 2[J]. Earth and Planetary Science Letters, 2019, 517: 50-60.
[7] Arthur M A, Sageman B B. Marine black shales: Depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Sciences, 1994, 22: 499-551.
[8] Baioumy H, Lehmann B. Anomalous enrichment of redox-sensitive trace elements in the marine black shales from the Duwi Formation, Egypt: Evidence for the Late Cretaceous Tethys anoxia[J]. Journal of African Earth Sciences, 2017, 133: 7-14.
[9] Leckie R M, Bralower T J, Cashman R. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous[J]. Paleoceanography, 2002, 17(3): 1041.
[10] Wang T Y, Li G B, Aitchison J C, et al. Evolution of mid-Cretaceous radiolarians in response to oceanic anoxic events in the eastern Tethys (southern Tibet, China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 536: 109369.
[11] Arthur M A, Dean W E, Pratt L M. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary[J]. Nature, 1988, 335(6192): 714-717.
[12] Li Y X, Bralower T J, Montañez I P, et al. Toward an orbital chronology for the early Aptian Oceanic Anoxic Event (OAE1a, ~ 120 Ma)[J]. Earth and Planetary Science Letters, 2008, 271(1/2/3/4): 88-100.
[13] Tsikos H, Karakitsios V, van Breugel Y, et al. Organic-carbon deposition in the Cretaceous of the Ionian Basin, NW Greece: The Paquier Event (OAE 1b) revisited[J]. Geological Magazine, 2004, 141(4): 401-416.
[14] Li Y X, Montañez I P, Liu Z H, et al. Astronomical constraints on global carbon-cycle perturbation during Oceanic Anoxic Event 2 (OAE2)[J]. Earth and Planetary Science Letters, 2017, 462: 35-46.
[15] Laurin J, Barclay R S, Sageman B B, et al. Terrestrial and marginal-marine record of the mid-Cretaceous Oceanic Anoxic Event 2 (OAE 2): High-resolution framework, carbon isotopes, CO2 and sea-level change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 524: 118-136.
[16] Coccioni R, Erba E, Premoli-Silva I. Barremian-Aptian calcareous plankton biostratigraphy from the Gorgo Cerbara section (Marche, central Italy) and implications for plankton evolution[J]. Cretaceous Research, 1992, 13(5/6): 517-537.
[17] Bornemann A, Pross J, Reichelt K, et al. Reconstruction of short-term palaeoceanographic changes during the Formation of the Late albian‘niveau breistroffer’black shales (oceanic anoxic event 1d, SE France)[J]. Journal of the Geological Society, 2005, 162(4): 623-639.
[18] Chen X, Idakieva V, Stoykova K, et al. Ammonite biostratigraphy and organic carbon isotope chemostratigraphy of the early Aptian oceanic anoxic event (OAE 1a) in the Tethyan Himalaya of southern Tibet[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 531-542.
[19] Li X H, Jenkyns H C, Wang C S, et al. Upper Cretaceous carbon- and oxygen- isotope stratigraphy of hemipelagic carbonate facies from southern Tibet, China[J]. Journal of the Geological Society, 2006, 163(2): 375-382.
[20] Gangl S K, Moy C M, Stirling C H, et al. High-resolution records of Oceanic Anoxic Event 2: Insights into the timing, duration and extent of environmental perturbations from the palaeo-South Pacific Ocean[J]. Earth and Planetary Science Letters, 2019, 518: 172-182.
[21] März C, Poulton S W, Beckmann B, et al. Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters[J]. Geochimica et Cosmochimica Acta, 2008, 72(15): 3703-3717.
[22] Prauss M L. Marine palynology of the Oceanic Anoxic Event 3 (OAE3, Coniacian-Santonian) at Tarfaya, Morocco, NW Africa-transition from preservation to production controlled accumulation of marine organic carbon[J]. Cretaceous Research, 2015, 53: 19-37.
[23] Jenkyns H C, Dickson A J, Ruhl M, et al. Basalt-seawater interaction, the Plenus Cold Event, enhanced weathering and geochemical change: Deconstructing Oceanic Anoxic Event 2 (Cenomanian-Turonian, Late Cretaceous)[J]. Sedimentology, 2017, 64(1): 16-43.
[24] Robinson S A, Dickson A J, Pain A, et al. Southern Hemisphere sea-surface temperatures during the Cenomanian-Turonian: Implications for the termination of Oceanic Anoxic Event 2[J]. Geology, 2019, 47(2): 131-134.
[25] Pearce M A, Jarvis I, Tocher B A. The Cenomanian-Turonian boundary event, OAE2 and palaeoenvironmental change in epicontinental seas: New insights from the dinocyst and geochemical records[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(1/2): 207-234.
[26] Topper R P M, Trabucho Alexandre J, Tuenter E, et al. A regional ocean circulation model for the mid-Cretaceous North Atlantic Basin: Implications for black shale formation[J]. Climate of the Past, 2011, 7(1): 277-297.
[27] Zheng X Y, Jenkyns H C, Gale A S, et al. A climatic control on reorganization of ocean circulation during the mid-Cenomanian event and Cenomanian-Turonian oceanic anoxic event (OAE 2): Nd isotope evidence[J]. Geology, 2016, 44(2): 151-154.
[28] Arthur M A, Brumsack H J, Jenkyns H C, et al. Stratigraphy, Geochemistry, and Paleoceanography of Organic Carbon-Rich Cretaceous Sequences[M]//Ginsburg R N, Beaudoin B. Cretaceous resources, events and rhythms: Background and plans for research. Dordrecht: Springer, 1990: 75-119.
[29] Larson R L. Latest pulse of Earth: Evidence for a mid-Cretaceous superplume[J]. Geology, 1991, 19(6): 547-550.
[30] Jenkyns H C. Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 361(1810): 1885-916.
[31] Orth C J, Attrep M, Quintana L R, et al. Elemental abundance anomalies in the Late Cenomanian extinction interval: A search for the source(s)[J]. Earth and Planetary Science Letters, 1993, 117(1/2): 189-204.
[32] Snow L J, Duncan R A, Bralower T J. Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their relationship to Caribbean plateau construction and oxygen anoxic event 2[J]. Paleoceanography, 2005, 20(3): PA3005.
[33] Turgeon S C, Creaser R A. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode[J]. Nature, 2008, 454(7202): 323-326.
[34] Du Vivier A D C, Selby D, Sageman B B, et al. Marine 187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2[J]. Earth and Planetary Science Letters, 2014, 389: 23-33.
[35] Du Vivier A D C, Jacobson A D, Lehn G O, et al. Ca isotope stratigraphy across the Cenomanian-Turonian OAE 2: Links between volcanism, seawater geochemistry, and the carbonate fractionation factor[J]. Earth and Planetary Science Letters, 2015, 416: 121-131.
[36] O’Brien C L, Robinson S A, Pancost R D, et al. Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes[J]. Earth-Science Reviews, 2017, 172: 224-247.
[37] Paul C R C, Mitchell S F, Marshall J D, et al. Palaeoceanographic events in the middle Cenomanian of Northwest Europe[J]. Cretaceous Research, 1994, 15(6): 707-738.
[38] Coccioni R, Galeotti S. The mid-Cenomanian event: Prelude to OAE 2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 190: 427-440.
[39] Beil S, Kuhnt W, Holbourn A E, et al. New insights into Cenomanian paleoceanography and climate evolution from the Tarfaya Basin, southern Morocco[J]. Cretaceous Research, 2018, 84: 451-473.
[40] Huck S, Heimhofer U, Rameil N, et al. Strontium and carbon-isotope chronostratigraphy of Barremian⁃Aptian shoal-water carbonates: Northern Tethyan platform drowning predates OAE 1a[J]. Earth and Planetary Science Letters, 2011, 304(3/4): 547-558.
[41] 赵文金,万晓樵. 藏南定日地区Cenomanian/Turonian界线附近的生物古海洋事件[J]. 地质科学,2003,38(2):155-164.

Zhao Wenjin, Wan Xiaoqiao. Bio-Palaeooceanographic events near the Cenomanian-Turonian boundary in Tingri, southern Tibet, China[J]. Chinese Journal of Geology, 2003, 38(2): 155-164.
[42] Wan X Q, Wignall P B, Zhao W J. The Cenomanian-Turonian extinction and oceanic anoxic event: Evidence from southern Tibet[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 199(3/4): 283-298.
[43] Wan X Q, Wei M R, Li G B. δ13C values from the Cenomanian-Turonian passage beds of southern Tibet[J]. Journal of Asian Earth Sciences, 2003, 21(8): 861-866.
[44] 石和,李国忠,赵鹏肖,等. 藏南定日县贡扎上白垩统浮游有孔虫生物地层新资料[J]. 成都理工大学学报(自然科学版),2006,33(2):134-140.

Shi He, Li Guozhong, Zhao Pengxiao, et al. New biostratigraphic materials of planktic foraminifera of the Upper Cretaceous from Gongza, Dingri, southern Tibet, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2006, 33(2): 134-140.
[45] Bomou B, Adatte T, Tantawy A A, et al. The expression of the Cenomanian–Turonian oceanic anoxic event in Tibet[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 369: 466-481.
[46] Zhang X L, Gao Y P, Chen X, et al. Nitrogen isotopic composition of sediments from the eastern Tethys during Oceanic Anoxic Event 2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 515: 123-133.
[47] 马丽凤. 藏南定日地区上白垩统海相地层(~94Ma)的岩石磁学研究[D]. 南京:南京大学,2015.

Ma Lifeng. Rock magnetic study of the Upper Cretaceous marine succession (~ 94Ma) in Tingri area, southern Tibet, China[D]. Nanjing: Nanjing University, 2015.
[48] Li Y X, Gill B, Montañez I P, et al. Orbitally driven redox fluctuations during cretaceous Oceanic Anoxic Event 2 (OAE2) revealed by a new magnetic proxy[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109465.
[49] Thompson R, Stober J C, Turner G M, et al. Environmental applications of magnetic measurements[J]. Science, 1980, 207(4430): 481-486.
[50] Bloemendal J, King J W, Hall F R, et al. Rock magnetism of Late Neogene and Pleistocene deep-sea sediments: Relationship to sediment source, diagenetic processes, and sediment lithology[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B4): 4361-4375.
[51] Maher B A, Karloukovski V V, Mutch T J. High-field remanence properties of synthetic and natural submicrometre haematites and goethites: Significance for environmental contexts[J]. Earth and Planetary Science Letters, 2004, 226(3/4): 491-505.
[52] Blakey R W.Global paleogeography [M].NAU Geogloy.In:Northern Arizona University, 2D11Cused with permission July2021, Source map© 2020 Colorado Ploteau Geosystems Inc.
[53] 余光明,王成善. 西藏特提斯沉积地质[M]. 地质专报(三,12). 北京:地质出版社,1990:1-185.

Yu Guangming, Wang Chengshan. Sedimentary geology of Tibetan Tethys [M]. Geology Special (Ⅲ,12). Beijing: Geological Publishing House, 1990: 1-185.
[54] Liu G H, Einsele G. Sedimentary history of the Tethyan Basin in the Tibetan Himalayas[J]. Geologische Rundschau, 1994, 83(1): 32-61.
[55] Wang C S, Xia D X, Zhou X, et al. Field trip guide: T121/T387 geology between the indus-Yarlung Zangbo suture zone and the Himalaya Mountains (Xizang), China[M]. Beijing: Geological Publishing House, 1996: 1-72.
[56] 马超,王成善,陈曦,等. 藏南晚白垩世旋回地层学研究:以定日贡扎剖面为例[J]. 地学前缘,2009,16(5):134-142.

Ma Chao, Wang Chengshan, Chen Xi, et al. Cyclostratigraphic study of the Upper Cretaceous of southern Tibet, China: A case study of Gongzha section[J]. Earth Science Frontiers, 2009, 16(5): 134-142.
[57] Chen X, Wang C S, Wu H C, et al. Orbitally forced sea-level changes in the upper Turonian-Lower Coniacian of the Tethyan Himalaya, southern Tibet[J]. Cretaceous Research, 2015, 56: 691-701.
[58] 胡修棉,王成善,李祥辉,等. 西藏南部Cenomanian-Turonian缺氧事件:有机地球化学研究[J]. 地球化学,2000,29(5):417-424.

Hu Xiumian, Wang Chengshan, Li Xianghui, et al. Cenomanian- Turonian anoxic event in southern Tibet: A study of organic geochemistry[J]. Geochimica, 2000, 29(5): 417-424.
[59] 李祥辉,王成善,Jenkyns H C,等. 西藏南部上白垩统高分辨率全岩碳同位素地层学[J]. 地质论评,2006,52(3):304-313.

Li Xianghui, Wang Chengshan, Jenkyns H C, et al. High-resolution bulk carbon isotope stratigraphy of Upper Cretaceous in southern Xizang(Tibet)[J]. Geological Review, 2006, 52(3): 304-313.
[60] Maher B A. Magnetic properties of some synthetic sub-micron magnetites[J]. Geophysical Journal International, 1988, 94(1): 83-96.
[61] King J W, Channell J E T. Sedimentary magnetism, environmental magnetism, and magnetostratigraphy[J]. Reviews of Geophysics, 1991, 29(S1): 358-370.
[62] Thompson R. Environmental magnetism[M]. Germany: Springer Science & Business Media, 1986: 1-228.
[63] Banerjee S K, King J, Marvin J. A rapid method for magnetic granulometry with applications to environmental studies[J]. Geophysical Research Letters, 1981, 8(4): 333-336.
[64] Thompson R, Oldfield F. Environmental magnetism[M]. London: Allen & Unwin, 1986: 1-191.
[65] Evans M E, Heller F. Environmental magnetism: Principles and applications of enviromagnetics[M]. Boston: Academic Press, 2003: 1-293.
[66] Liu Q S, Roberts A P, Larrasoaña J C, et al. Environmental magnetism: Principles and applications[J]. Reviews of Geophysics, 2012, 50(4): RG4002.
[67] Arai K, Sakai H, Konishi K. High-resolution rock-magnetic variability in shallow marine sediment: A sensitive paleoclimatic metronome[J]. Sedimentary Geology, 1997, 110(1/2): 7-23.
[68] Berner R A. A new geochemical classification of sedimentary environments[J]. Journal of Sedimentary Research, 1981, 51(2): 359-365.
[69] Roberts A P, Weaver R. Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4)[J]. Earth and Planetary Science Letters, 2005, 231(3/4): 263-277.
[70] 王立成,王成善,李亚林,等. 藏南地区海相白垩系富有机质沉积的影响因素浅析[J]. 地学前缘,2009,16(5):107-117.

Wang Licheng, Wang Chengshan, Li Yalin, et al. A simple analysis of influential factors for Cretaceous marine organic-rich sediments in southern Tibet[J]. Earth Science Frontiers, 2009, 16(5): 107-117.
[71] Haq B U. Cretaceous eustasy revisited[J]. Global and Planetary Change, 2014, 113: 44-58.
[72] Gradstein F M, Ogg J G, Hilgen F J. On the geologic time scale[J]. Newsletters on Stratigraphy, 2012, 45(2): 171-188.
[73] Rhoads D C, Morse J W. Evolutionary and ecologic significance of oxygen-deficient marine basins[J]. Lethaia, 1971, 4(4): 413-428.
[74] Rue E L, Smith G J, Cutter G A, et al. The response of trace element redox couples to suboxic conditions in the water column[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1997, 44(1): 113-134.
[75] Erbacher J, Thurow J, Littke R. Evolution patterns of radiolaria and organic matter variations: A new approach to identify sea-level changes in mid-Cretaceous pelagic environments[J]. Geology, 1996, 24(6): 499-502.
[76] Caron M, Dall’Agnolo S, Accarie H, et al. High-resolution stratigraphy of the Cenomanian–Turonian boundary interval at Pueblo (USA) and wadi Bahloul (Tunisia): Stable isotope and bio-events correlation[J]. Geobios, 2006, 39(2): 171-200.
[77] Gale A S, Kennedy W J, Voigt S, et al. Stratigraphy of the Upper Cenomanian-Lower Turonian Chalk succession at Eastbourne, Sussex, UK: Ammonites, inoceramid bivalves and stable carbon isotopes[J]. Cretaceous Research, 2005, 26(3): 460-487.
[78] Gertsch B, Keller G, Adatte T, et al. Cenomanian–Turonian transition in a shallow water sequence of the Sinai, Egypt[J]. International Journal of Earth Sciences, 2010, 99(1): 165-182.
[79] Ifrim C, Götz S, Stinnesbeck W. Fluctuations of the oxygen minimum zone at the end of Oceanic Anoxic Event 2 reflected by benthic and planktic fossils[J]. Geology, 2011, 39(11): 1043-1046.
[80] Kuhnt W, Holbourn A E, Beil S, et al. Unraveling the onset of Cretaceous Oceanic Anoxic Event 2 in an extended sediment archive from the Tarfaya-Laayoune Basin, Morocco[J]. Paleoceanography, 2017, 32(8): 923-946.
[81] Larson R L, Erba E. Onset of the mid-Cretaceous greenhouse in the Barremian - Aptian: Igneous events and the biological, sedimentary, and geochemical responses[J]. Paleoceanography, 1999, 14(6): 663-678.