[1] Tierney J E, Poulsen C J, Montañez I P, et al. Past climates inform our future[J]. Science, 2020, 370(6517): eaay3701.
[2] Bowen G J, Bowen B B. Mechanisms of PETM global change constrained by a new record from central Utah[J]. Geology, 2008, 36(5): 379-382.
[3] Sanjuan J, Eaton J G. Charophyte flora from the Claron Formation (Aquarius Plateau, southwestern Utah)-biostratigraphic implications[J]. Micropaleontology, 2016, 62(4): 323-330.
[4] Sanjuan J, Vicente A, Eaton J G. New charophyte flora from the Pine Hollow and Claron formations (southwestern Utah). Taxonomic, biostratigraphic, and paleobiogeographic implications[J]. Review of Palaeobotany and Palynology, 2020, 282: 104289.
[5] Eaton J G, Korth W W, Brinkman D B. Vertebrate fossils from the Claron Formation, Sweetwater Creek area, Garfield county, Utah, U.S.A.[J]. Rocky Mountain Geology, 2018, 53(2): 113-127.
[6] DeCourten F. Shadows of time: The geology of Bryce canyon national park[M]. Utah: Bryce Canyon Natural History Association, 1994.
[7] Taylor W J. Stratigraphic and lithologic analysis of the Claron Formation in southwestern Utah[M]. Salt Lake City: Utah Geological Survey Miscellaneous Publication, 1993.
[8] Goldstrand P M. Tectonostratigraphy, petrology, and paleogeography of Upper Cretaceous to Eocene rocks of southwest Utah[D]. Reno: University of Nevada, 1991.
[9] Bown T M, Hasiotis S T, Genise J F, et al. Trace fossils of Hymenoptera and other insects and paleoenvironments of the Claron Formation (Paleocene and Eocene), southwestern Utah[M]. Washington: US Geological Survey Bulletin, 1997, 2153: 41-58.
[10] 丁仲礼,孙继敏,朱日祥,等. 黄土高原红黏土成因及上新世北方干旱化问题[J]. 第四纪研究,1997(2):147-157.

Ding Zhongli, Sun Jimin, Zhu Rixiang, et al. Eolian origin of the red clay deposits in the Loess Plateau and implications for Pliocene climatic changes[J]. Quaternary Sciences, 1997(2): 147-157.
[11] Tate S E, Greene R S B, Scott K M, et al. Recognition and characterisation of the aeolian component in soils in the Girilambone region, north western New South Wales, Australia[J]. CATENA, 2007, 69(2): 122-133.
[12] Vandenberghe J. Grain size of fine-grained windblown sediment: A powerful proxy for process identification[J]. Earth-Science Reviews, 2013, 121: 18-30.
[13] Liu X X, Sun Y B, Vandenberghe J, et al. Palaeoenvironmental implication of grain-size compositions of terrace deposits on the western Chinese Loess Plateau[J]. Aeolian Research, 2018, 32: 202-209.
[14] Zhang X N, Zhou A F, Zhang C, et al. High-resolution records of climate change in arid eastern central Asia during MIS 3 (51600-25300 cal a BP) from Wulungu Lake, north-western China[J]. Journal of Quaternary Science, 2016, 31(6): 577-586.
[15] Zhang X N, Zhang H C, Chang F Q, et al. Sedimentary grain-size record of Holocene runoff fluctuations in the Lake Lugu watershed, SE Tibetan Plateau[J]. The Holocene, 2021, 31(3): 346-355.
[16] Ghosh J K, Mazumder B S. Size distribution of suspended particles—unimodality, symmetry and lognormality[M]//Taillie C, Patil G P, Baldessari B A. Statistical distribution in scientific Work: Applications in physical, social and life sciences. Berlin: Springer Science & Business Media, 1981: 21-32.
[17] McLaren P, Bowles D. The effects of sediment transport on grain-size distributions[J]. Journal of Sedimentary Research, 1985, 55(4): 457-470.
[18] Yang F, Zhang G L, Yang F, et al. Pedogenetic interpretations of particle-size distribution curves for an alpine environment[J]. Geoderma, 2016, 282: 9-15.
[19] 孙东怀,安芷生,苏瑞侠,等. 古环境中沉积物粒度组分分离的数学方法及其应用[J]. 自然科学进展,2001,11(3):269-276.

Sun Donghuai, An Zhisheng, Su Ruixia, et al. Mathematical approach to sedimentary component partitioning of polymodal sediments and its applications[J]. Progress in Natural Science, 2001, 11(3): 269-276.
[20] Sun D H, Bloemendal J, Rea D K, et al. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 2002, 152(3/4): 263-277.
[21] Prins M A, Vriend M, Nugteren G, et al. Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: Inferences from unmixing of loess grain-size records[J]. Quaternary Science Reviews, 2007, 26(1/2): 230-242.
[22] Heslop D, von Dobeneck T, Höcker M. Using non-negative matrix factorization in the “unmixing” of diffuse reflectance spectra[J]. Marine Geology, 2007, 241(1/2/3/4): 63-78.
[23] Dietze E, Hartmann K, Diekmann B, et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China[J]. Sedimentary Geology, 2012, 243-244: 169-180.
[24] Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12): 4494-4506.
[25] Yu S Y, Colman S M, Li L X. BEMMA: A hierarchical Bayesian end-member modeling analysis of sediment grain-size distributions[J]. Mathematical Geosciences, 2016, 48(6): 723-741.
[26] van Hateren J A, Prins M A, van Balen R T. On the genetically meaningful decomposition of grain-size distributions: A comparison of different end-member modelling algorithms[J]. Sedimentary Geology, 2018, 375: 49-71.
[27] Blakey R C, Ranney W D. Flat-slab subduction, the Laramide orogeny, uplift of the Colorado Plateau and rocky mountains: Paleocene and Eocene: Ca. 65-35 Ma[M]//Blakey R C, Ranney W D. Ancient landscapes of western North America. Cham: Springer, 2018: 131-148.
[28] Lawton T F. Laramide sedimentary basins and sediment-dispersal systems[M]//Miall A D. The sedimentary basins of the United States and Canada. Amsterdam: Elsevier, 2019: 529-557.
[29] DeCelles P G. Late Jurassic to Eocene evolution of the cordilleran thrust belt and foreland basin system, western U.S.A.[J]. American Journal of Science, 2004, 304(2): 105-168.
[30] Sprinkel D A, Chidsey T C, Anderson P B. Geology of Utah's parks and monuments[M]. 3rd ed. Salt Lake City: Utah Geological Association, 2010.
[31] Bowers W E. The Canaan peak, pine hollow, and Wasatch formations in the table cliff region, Garfield county, Utah[M]. Washington: US Government Printing Office, 1972.
[32] Blott S J, Pye K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 2001, 26(11): 1237-1248.
[33] Xiao J L, Porter S C, An Z S, et al. Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of central China during the last 130, 000 yr[J]. Quaternary Research, 1995, 43(1): 22-29.
[34] 孙有斌. 黄土样中石英单矿物的分离[J]. 岩矿测试,2001,20(1):23-26.

Sun Youbin. Separation of quartz minerals from loess samples[J]. Rock and Mineral Analysis, 2001, 20(1): 23-26.
[35] 李越,宋友桂,宗秀兰,等. 伊犁盆地北部山麓黄土粒度端元指示的粉尘堆积过程[J]. 地理学报,2019,74(1):162-177.

Li Yue, Song Yougui, Zong Xiulan, et al. Dust accumulation processes of piedmont loess indicated by grain-size end members in northern Ili Basin[J]. Acta Geographica Sinica, 2019, 74(1): 162-177.
[36] Liu Y M, Liu X X, Sun Y B. QGrain: An open-source and easy-to-use software for the comprehensive analysis of grain size distributions[J]. Sedimentary Geology, 2021, 423: 105980.
[37] 卢演俦,文启忠,黄伯钧,等. 中国黄土物质来源的初步探讨:石英粉砂颗粒表面结构的电子显微镜研究[J]. 地球化学,1976(1):47-53.

Lu Yanchou, Wen Qizhong, Huang Bojun, et al. A prelimilary discussion on the source of loessic materials in China: A study of the surface textures of silt quartz grains by transmission electron microscope[J]. Geochimica, 1976(1): 47-53.
[38] Margolis S V, Krinsley D H. Processes of formation and environmental occurrence of microfeatures on detrital quartz grains[J]. American Journal of Science, 1974, 274(5): 449-464.
[39] 刘秀铭,吉金平,章涛,等. 湖南古丈奥陶纪红石林地层特征与石灰岩沉积环境分析[J]. 地球环境学报,2021,12(1):1-18.

Liu Xiuming, Ji Jinping, Zhang Tao, et al. Analysis on sedimentary environment of the red stone forest strata in Guzhang, Hunan province[J]. Journal of Earth Environment, 2021, 12(1): 1-18.
[40] Schwertmann U, Cornell R M. Iron oxides in the laboratory: Preparation and characterisation[M]. 2nd ed. New York: Wiley-VCH, 2008.
[41] 沈吉,薛滨,吴敬禄,等. 湖泊沉积与环境演化[M]. 北京:科学出版社,2010:1-575.

Shen Ji, Xue Bin, Wu Jinglu, et al. Lake sediments and environmental evolution[M]. Beijing: Science Press, 2010: 1-575.
[42] 刘东生. 黄土与环境[M]. 北京:科学出版社,1985:191-277.

Liu Tungsheng. Loess and environment[M]. Beijing: Science Press, 1985: 191-277.
[43] 朱丽东. 中亚热带加积型红土及其所记录的第四纪环境变化探讨[D]. 兰州:兰州大学,2007.

Zhu Lidong. Aggradation red earth sediments in mid-subtropics of China and their recorded environmental changes during Quaternary[D]. Lanzhou: Lanzhou University, 2007.
[44] 孙有斌,安芷生. 风尘堆积物中石英颗粒表面微结构特征及其沉积学指示[J]. 沉积学报,2000,18(4):506-509.

Sun Youbin, An Zhisheng. Sedimentary interpretation of surface textures of quartz grains from the eolian deposits[J]. Acta Sedimentologica Sinica, 2000, 18(4): 506-509.
[45] 谢又予. 中国石英砂表面结构特征图谱[M]. 北京:海洋出版社,1984:4-10.

Xie Youyu. Atlas of quartz sand surface textural features of China micrographs[M]. Beijing: Ocean Press, 1984: 4-10.
[46] Mahaney W. Atlas of sand grain surface textures and applications[M]. Oxford: Oxford University Press, 2002.
[47] Krinsley D, Cavallero L. Scanning electron microscopic examination of periglacial eolian sands from Long Island, New York[J]. Journal of Sedimentary Research, 1970, 40(4): 1345-1350.
[48] 江新胜,徐金沙,潘忠习. 鄂尔多斯盆地白垩纪沙漠石英沙颗粒表面特征[J]. 沉积学报,2003,21(3):416-422.

Jiang Xinsheng, Xu Jinsha, Pan Zhongxi. Microscopic features on quartz sand grain surface in the Cretaceous desert of Ordos Basin[J]. Acta Sedimentologica Sinica, 2003, 21(3): 416-422.
[49] Guo Z T, Peng S Z, Hao Q Z, et al. Origin of the Miocene-Pliocene red-earth formation at Xifeng in northern China and implications for paleoenvironments[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 170(1/2): 11-26.
[50] 鹿化煜,安芷生. 黄土高原红黏土与黄土古土壤粒度特征对比:红黏土风成成因的新证据[J]. 沉积学报,1999,17(2):226-232.

Lu Huayu, An Zhisheng. Comparison of grain-size distribution of red clay and loess-paleosol deposits in Chinese Loess Plateau[J]. Acta Sedimentologica Sinica, 1999, 17(2): 226-232.
[51] Bronger A, Heinkele T. Mineralogical and clay mineralogical aspects of loess research[J]. Quaternary International, 1990, 7-8: 37-51.
[52] 李徐生,杨达源,鹿化煜,等. 皖南第四纪风尘堆积序列粒度特征及其意义[J]. 海洋地质与第四纪地质,1997,17(4):74-78,80-81.

Li Xusheng, Yang Dayuan, Lu Huayu, et al. The grain size features of Quaternary aeolian dust deposition sequence in south Anhui and their significance[J]. Marine Geology & Quaternary Geology, 1997, 17(4): 74-78, 80-81.
[53] 朱丽东,叶玮,周尚哲,等. 中亚热带第四纪红黏土的粒度特征[J]. 地理科学,2006,26(5):586-591.

Zhu Lidong, Ye Wei, Zhou Shangzhe, et al. Grain-size features of red earth in mid-subtropics[J]. Scientia Geographica Sinica, 2006, 26(5): 586-591.
[54] Wang X, Sun D H, Wang F, et al. A high-resolution multi-proxy record of Late Cenozoic environment change from central Taklimakan Desert, China[J]. Climate of the Past, 2013, 9(6): 2731-2739.
[55] Liu X X, Vandenberghe J, An Z S, et al. Grain size of Lake Qinghai sediments: Implications for riverine input and Holocene monsoon variability[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 41-51.
[56] Xiao J L, Fan J W, Zhai D Y, et al. Testing the model for linking grain-size component to lake level status of modern clastic lakes[J]. Quaternary International, 2015, 355: 34-43.
[57] Vandenberghe J, Sun Y, Wang X, et al. Grain-size characterization of reworked fine-grained aeolian deposits[J]. Earth-Science Reviews, 2018, 177: 43-52.
[58] Tsoar H, Pye K. Dust transport and the question of desert loess formation[J]. Sedimentology, 1987, 34(1): 139-153.
[59] Chen F H, Qiang M R, Zhou A F, et al. A 2000-year dust storm record from Lake Sugan in the dust source area of arid China[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(5): 2149-2160.
[60] Lin Y C, Mu G J, Xu L S, et al. The origin of bimodal grain-size distribution for aeolian deposits[J]. Aeolian Research, 2016, 20: 80-88.
[61] 孙东怀,鹿化煜, Rea D,等. 中国黄土粒度的双峰分布及其古气候意义[J]. 沉积学报,2000,18(3):327-335.

Sun Donghuai, Lu Huayu, Rea D, et al. Bimode grain-size distribution of Chinese loess and its paleoclimate implication[J]. Acta Sedimentologica Sinica, 2000, 18(3): 327-335.
[62] 刘秀铭,吕镔,毛学刚,等. 风积地层中铁矿物随环境变化及其启示[J]. 第四纪研究,2014,34(3):443-457.

Liu Xiuming, Bin Lü, Mao Xuegang, et al. Iron minerals of aeolian deposits vary with environment and its significances[J]. Quaternary Sciences, 2014, 34(3): 443-457.