[1] Thiry M. Palaeoclimatic interpretation of clay minerals in marine deposits: An outlook from the continental origin[J]. Earth-Science Reviews, 2000, 49(1/2/3/4): 201-221.
[2] Madhavaraju J, Ramasamy S, Ruffell A, et al. Clay mineralogy of the Late Cretaceous and Early Tertiary successions of the Cauvery Basin (southeastern India): Implications for sediment source and palaeoclimates at the K/T boundary[J]. Cretaceous Research, 2002, 23(2): 153-163.
[3] Fürsich F T, Singh I B, Joachimski M, et al. Palaeoclimate reconstructions of the Middle Jurassic of Kachchh (western India): An integrated approach based on palaeoecological, oxygen isotopic, and clay mineralogical data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 217(3/4): 289-309.
[4] Jiménez Berrocoso Á, Zuluaga M C, Elorza J. Diagenesis, palaeoclimate and tectono-sedimentary influences on clay mineralogy and stable isotopes from Upper Cretaceous marine successions of the Basque-Cantabrian Basin (N Spain)[J]. Cretaceous Research, 2008, 29(3): 386-404.
[5] Goodbred Jr S L. Response of the Ganges dispersal system to climate change: A source-to-sink view since the last interstade[J]. Sedimentary Geology, 2003, 162(1/2): 83-104.
[6] Foreman B Z, Heller P L, Clementz M T. Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary[J]. Nature, 2012, 491(7422): 92-95.
[7] Mason C C, Fildani A, Gerber T, et al. Climatic and anthropogenic influences on sediment mixing in the Mississippi source-to-sink system using detrital zircons: Late Pleistocene to recent[J]. Earth and Planetary Science Letters, 2017, 466: 70-79.
[8] Strasser A, Hilgen F J, Heckel P H. Cyclostratigraphy – concepts, definitions, and applications[J]. Newsletters on Stratigraphy, 2006, 42(2): 75-114.
[9] Eldrett J S, Ma C, Bergman S C, et al. Origin of limestone–marlstone cycles: Astronomic forcing of organic-rich sedimentary rocks from the Cenomanian to early Coniacian of the Cretaceous Western Interior Seaway, USA[J]. Earth and Planetary Science Letters, 2015, 423: 98-113.
[10] Pittet B, Strasser A, Mattioli E. Depositional Sequences in deep-shelf environments: A response to sea-level changes and shallow-platform carbonate productivity (Oxfordian, Germany and Spain)[J]. Journal of Sedimentary Research, 2000, 70(2): 392-407.
[11] Boulila S, de Rafélis M, Hinnov L A, et al. Orbitally forced climate and sea-level changes in the Paleoceanic Tethyan domain (marl–limestone alternations, Lower Kimmeridgian, SE France)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292(1/2): 57-70.
[12] Fang Q, Wu H C, Hinnov L A, et al. Abiotic and biotic responses to Milankovitch-forced megamonsoon and glacial cycles recorded in South China at the end of the Late Paleozoic Ice Age[J]. Global and Planetary Change, 2018, 163: 97-108.
[13] Giorgioni M, Weissert H, Bernasconi S M, et al. Orbital control on carbon cycle and oceanography in the mid‐Cretaceous greenhouse[J]. Paleoceanography, 2012, 27(1): PA1204.
[14] 杨江海,马严. 源—汇沉积过程的深时古气候意义[J]. 地球科学,2017,42(11):1910-1921.

Yang Jianghai, Ma Yan. Paleoclimate perspectives of source-to-sink sedimentary processe[J]. Earth Science, 2017, 42(11): 1910-1921.
[15] Castelltort S, van Den Driessche J. How plausible are high-frequency sediment supply-driven cycles in the stratigraphic record?[J]. Sedimentary Geology, 2003, 157(1/2): 3-13.
[16] Romans B W, Castelltort S, Covault J A, et al. Environmental signal propagation in sedimentary systems across timescales[J]. Earth-Science Reviews, 2016, 153: 7-29.
[17] Pizzuto J, Keeler J, Skalak K, et al. Storage filters upland suspended sediment signals delivered from watersheds[J]. Geology, 2017, 45(2): 151-154.
[18] 孔为伦,李双应,万秋,等. 海洋粘土矿物的古环境含意辨析[J]. 安徽大学学报(自然科学版),2011,35(5):100-108.

Kong Weilun, Li Shuangying, Wan Qiu, et al. Differentiation and discrimination of marine clay minerals as indicators of paleoenvironment[J]. Journal of Anhui University (Natural Science Edition), 2011, 35(5): 100-108.
[19] Lanson B, Beaufort D, Berger G, et al. Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: A review[J]. Clay Minerals, 2002, 37(1): 1-22.
[20] Boles J R, Franks S G. Clay diagenesis in wilcox sandstones of Southwest Texas: Implications of smectite diagenesis on sandstone cementation[J]. Journal of Sedimentary Petrology, 1979, 49(1): 55-70.
[21] Yan J X, Munnecke A, Steuber T, et al. Marine sepiolite in middle permian carbonates of South China: Implications for secular variation of phanerozoic seawater chemistry[J]. Journal of Sedimentary Research, 2005, 75(3): 328-338.
[22] Su C P, Li F, Tan X C, et al. Recognition of diagenetic contribution to the formation of limestone-marl alternations: A case study from Permian of South China[J]. Marine and Petroleum Geology, 2020, 111: 765-785.
[23] 苏成鹏. 川东地区茅口组眼球状石灰岩成因机制及地质意义[D]. 成都:西南石油大学,2017.

Su Chengpeng. Genesis and geological significance of eyeball-shaped limestone of Maokou Formation in eastern Sichuan Basin[D]. Chengdu: Southwest Petroleum University, 2017.
[24] 朱洪发,王恕一. 苏南、皖南三叠纪瘤状灰岩、蠕虫状灰岩的成因[J]. 石油实验地质,1992,14(4):454-460.

Zhu Hongfa, Wang Shuyi. The origins of the Triassic nodular and vermicular limestones in South Jiangsu—South Anhui provinces[J]. Experimental Petroleum Geology, 1992, 14(4): 454-460.
[25] 蓝光志,张廷山,高卫东. 川西北地区早志留世瘤状灰岩的类型、成因及意义[J]. 西南石油学院学报,1994,16(3):1-5.

Lan Guangzhi, Zhang Tingshan, Gao Weidong. Classification, genesis and significance of nodular limestone of Early Silurian in NW Sichuan[J]. Journal of Southwestern Petroleum Institute, 1994, 16(3): 1-5.
[26] 苏成鹏,谭秀成,李飞,等. 华南中二叠统碳酸盐岩致密气储层特征及形成机理[C]//第十五届全国古地理学及沉积学学术会议摘要集. 成都:中国矿物岩石地球化学学会岩相古地理专业委员会,中国矿物岩石地球化学学会沉积学专业委员会,中国地质学会沉积地质专业委员会,中国地质学会地层古生物专业委员会,中国石油学会石油地质专业委员会,SEPM(Society for Sedimentary Geology),2018. [

Su Chengpeng, Tan Xiucheng, Li Fei, et al. Characteristics and formation mechanism of tight gas reservoirs in carbonate rocks of Middle Permian in South China[C]//The 15th national palaeogeography and sedimentology academic conference. Chengdu: Lithofacies and Paleogeography Committee of the Chinese Society of Mineral Petrogeochemistry, Sedimentology Committee of the Chinese Society of Mineral Rock Geochemistry, Sedimentary Geology Committee of Chinese Geological Society, Stratigraphic Paleontology Committee of Chinese Geological Society, Petroleum Geology Committee of China Petroleum Society, SEPM (Society for Sedimentary Geology), 2018.]
[27] 苏成鹏,谭秀成,王小芳,等. 四川盆地东部中二叠统茅口组眼球状石灰岩储层特征及成因[J]. 海相油气地质,2020,25(1):55-62.

Su Chengpeng, Tan Xiucheng, Wang Xiaofang, et al. Characteristics of eyeball-shaped limestone reservoir and its genesis of the Middle Permian Maokou Formation in East Sichuan Basin[J]. Marine Origin Petroleum Geology, 2020, 25(1): 55-62.
[28] 姚威,许锦,夏文谦,等. 四川盆地涪陵地区茅一段酸解气、吸附气特征及气源对比[J]. 天然气工业,2019,39(6):45-50.

Yao Wei, Xu Jin, Xia Wenqian, et al. A characteristic analysis between acidolysis gas and absorbed gas and its application to gas–source correlation in Mao 1 member, Fuling area, Sichuan Basin[J]. Natural Gas Industry, 2019, 39(6): 45-50.
[29] Scotese C R, Langford R P. Pangea and the paleogeography of the Permian[M]//Scholle P A, Peryt T M, Ulmer-Scholle D S. The Permian of northern pangea: Volume1: Paleogeography, paleoclimates, stratigraphy. Berlin Heidelberg: Springer, 1995.
[30] 王立亭,陆彦邦,赵时久,等. 中国南方二叠纪岩相古地理与成矿作用[M]. 北京:地质出版社,1994.

Wang Liting, Lu Yanbang, Zhao Shijiu, et al. Permian lithofacies palaeogeography and mineralization in South China[M]. Beijing: Geological Publishing House, 1994.
[31] 冯增昭,杨玉卿,金振奎,等. 中国南方二叠纪岩相古地理[J]. 沉积学报,1996,14(2):1-11.

Feng Zengzhao, Yang Yuqing, Jin Zhenkui, et al. Lithofacies paleogeography of the Permian of South China[J]. Acta Sedimentologica Sinica, 1996, 14(2): 1-11.
[32] Wang Y, Jin Y G. Permian palaeogeographic evolution of the Jiangnan Basin, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 160(1/2): 35-44.
[33] 何登发,李德生,张国伟,等. 四川多旋回叠合盆地的形成与演化[J]. 地质科学,2011,46(3):589-606.

He Dengfa, Li Desheng, Zhang Guowei, et al. Formation and evolution of multi-cycle superposed Sichuan Basin, China[J]. Chinese Journal of Geology, 2011, 46(3): 589-606.
[34] 黄涵宇,何登发,李英强,等. 四川盆地及邻区二叠纪梁山-栖霞组沉积盆地原型及其演化[J]. 岩石学报,2017,33(4):1317-1337.

Huang Hanyu, He Dengfa, Li Yingqiang, et al. The prototype and its evolution of the Sichuan sedimentary basin and adjacent areas during Liangshan and Qixia stages in Permian[J]. Acta Petrologica Sinica, 2017, 33(4): 1317-1337.
[35] 田景春,郭维,黄平辉,等. 四川盆地西南部茅口期岩相古地理[J]. 西南石油大学学报(自然科学版),2012,34(2):1-8.

Tian Jingchun, Guo Wei, Huang Pinghui, et al. Lithofacies palaeogeography of Maokou Period in southwestern Sichuan Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2012, 34(2): 1-8.
[36] 王海真,池英柳,赵宗举,等. 四川盆地栖霞组岩溶储层及勘探选区[J]. 石油学报,2013,34(5):833-842.

Wang Haizhen, Chi Yingliu, Zhao Zongju, et al. Karst reservoirs developed in the Middle Permian Qixia Formation of Sichuan Basin and selection of exploration regions[J]. Acta Petrolei Sinica, 2013, 34(5): 833-842.
[37] 沈树忠,张华,张以春,等. 中国二叠纪综合地层和时间框架[J]. 中国科学(D辑):地球科学,2019,49(1):160-193.

Shen Shuzhong, Zhang Hua, Zhang Yichun, et al. Permian integrative stratigraphy and timescale of China[J]. Science China (Seri. D): Earth Sciences, 2019, 49(1): 160-193.
[38] Sun Y D, Lai X L, Jiang H S, et al. Guadalupian (Middle Permian) conodont faunas at Shangsi Section, Northeast Sichuan province[J]. Journal of China University of Geosciences, 2008, 19(5): 451-460.
[39] 房强,景秀春,邓胜徽,等. 川北上寺剖面罗德阶一吴家坪阶牙形石生物地层[J]. 地层学杂志,2012,36(4):692-699.

Fang Qiang, Jing Xiuchun, Deng Shenghui, et al. Roadian–Wuchiapingian conodont biostratigraphy at the Shangsi section, northern Sichuan[J]. Journal of Stratigraphy, 2012, 36(4): 692-699.
[40] 何斌,徐义刚,王雅玫,等. 东吴运动性质的厘定及其时空演变规律[J]. 地球科学:中国地质大学学报,2005,30(1):89-96.

He Bin, Xu Yigang, Wang Yamei, et al. Nature of the Dongwu Movement and its temporal and spatial evolution[J]. Earth Science:Journal of China University of Geosciences, 2005, 30(1): 89-96.
[41] Yan J X, Ma Z X, Xie X N, et al. Subdivision of Permian fossil communities and habitat types in Northeast Sichuan, South China[J]. Journal of China University of Geosciences, 2008, 19(5): 441-450.
[42] Haq B U, Schutter S R. A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68.
[43] 苏成鹏,唐浩,黎虹玮,等. 四川盆地东部中二叠统茅口组顶部钙结壳的发现及其发育模式[J]. 古地理学报,2015,17(2):229-240.

Su Chengpeng, Tang Hao, Li Hongwei, et al. Discovery of caliches at top of the Middle Permian Maokou Formation, eastern Sichuan Basin and their developmental model[J]. Journal of Palaeogeography, 2015, 17(2): 229-240.
[44] Xiao D, Tan X C, Xi A H, et al. An inland facies-controlled eogenetic karst of the carbonate reservoir in the Middle Permian Maokou Formation, southern Sichuan Basin, SW China[J]. Marine and Petroleum Geology, 2016, 72: 218-233.
[45] 张霞,林春明,凌洪飞,等. 浙西地区奥陶系砚瓦山组瘤状灰岩及其成因探讨[J]. 古地理学报,2009,11(5):481-490.

Zhang Xia, Lin Chunming, Ling Hongfei, et al. Nodular limestone and its genesis from the Ordovician Yanwashan Formation in western Zhejiang province[J]. Journal of Palaeogeography, 2009, 11(5): 481-490.
[46] 刘喜停,颜佳新,薛武强. 灰岩—泥灰岩韵律层的差异成岩作用[J]. 地质论评,2012,58(4):627-635.

Liu Xiting, Yan Jiaxin, Xue Wuqiang. Differential diagenesis of limestone—marl alternations[J]. Geological Review, 2012, 58(4): 627-635.
[47] 刘喜停,颜佳新,马志鑫,等. 华南栖霞组灰岩—泥灰岩韵律层的成因[J]. 地球科学:中国地质大学学报,2014,39(2):155-164.

Liu Xiting, Yan Jiaxin, Ma Zhixin, et al. Origination of limestone-marl alternations from Qixia Formation of South China[J]. Earth Science:Journal of China University of Geosciences, 2014, 39(2): 155-164.
[48] 薛武强,刘喜停,颜佳新,等. 重庆南川地区中二叠统茅口组眼球状灰岩成因[J]. 地质科学,2015,50(3):1001-1013.

Xue Wuqiang, Liu Xiting, Yan Jiaxin, et al. The origin of eyeball-shaped limestone from Maokou Formation (Mid-Permian) in Nanchuan region, Chongqing, Southwest China[J]. Chinese Journal of Geology, 2015, 50(3): 1001-1013.
[49] 苏成鹏,谭秀成,马腾,等. 川东地区茅口组眼球状石灰岩成因机制及对油气勘探的启示[C]//第十四届全国古地理学及沉积学学术会议论文摘要集. 焦作:中国矿物岩石地球化学学会岩相古地理专业委员会,中国矿物岩石地球化学学会沉积学专业委员会,中国地质学会沉积地质专业委员会,中国地质学会地层古生物专业委员会,中国地质学会煤田地质专业委员会,中国石油学会石油地质专业委员会,SEPM(Society for Sedimentary Geology),2016.

Su Chengpeng, Tan Xiucheng, Ma Teng, et al. The enlightenment of genesis mechanism of eyeball-shaped limestone of Maokou Formation in eastern Sichuan Basin to oil and gas exploration[C]//The 14th national palaeogeography and sedimentology academic conference. Jiaozuo: The Special Committee of Lithofacies and Paleogeography of the Chinese Society of Mineral Petrogeochemistry, The Sedimentology Committee of the Chinese Society of Mineral Petrogeochemistry, The Committee of Sedimentary Geology, Chinese Geological Society, The Special Committee of Stratigraphy and Paleontology, Chinese Geological Society, Coalfield Geology Committee of Chinese Geological Society, Petroleum Geology Committee of China Petroleum Society, SEPM (Society for Sedimentary Geology), 2016.
[50] 罗进雄,何幼斌,何明薇,等. 华南中二叠统眼球状石灰岩特征及成因的思考[J]. 古地理学报,2019,21(4):613-626.

Luo Jinxiong, He Youbin, He Mingwei, et al. Thoughts on characteristics and origin of the Middle Permian eyeball-shaped limestone in South China[J]. Journal of Palaeogeography, 2019, 21(4): 613-626.
[51] 陈芸菁,王佩英,任磊夫. 海泡石在成岩作用过程中向滑石转化的研究[J]. 科学通报,1985(4):284-287.

Chen Yunjing, Wang Peiying, Ren Leifu. Transformation of sepiolite into talc during diagenesis[J]. Chinese Science Bulletin, 1985(4): 284-287.
[52] Taylor S R, McLennan S M. The composition and evolution of the continental crust: Rare earth element evidence from sedimentary rocks[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1981, 301(1461): 381-399.
[53] Bayon G, Toucanne S, Skonieczny C, et al. Rare earth elements and neodymium isotopes in world river sediments revisited[J]. Geochimica et Cosmochimica Acta, 2015, 170: 17-38.
[54] Kamber B S, Bolhar R, Webb G E. Geochemistry of Late Archaean stromatolites from Zimbabwe: Evidence for microbial life in restricted epicontinental seas[J]. Precambrian Research, 2004, 132(4): 379-399.
[55] Della Porta G, Webb G E, McDonald I. REE patterns of microbial carbonate and cements from Sinemurian (Lower Jurassic) siliceous sponge mounds (Djebel Bou Dahar, High Atlas, Morocco)[J]. Chemical Geology, 2015, 400: 65-86.
[56] Li F, Webb G E, Algeo T J, et al. Modern carbonate ooids preserve ambient aqueous REE signatures[J]. Chemical Geology, 2019, 509: 163-177.
[57] McLennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.
[58] Pozo M, Calvo J P. An overview of authigenic magnesian clays[J]. Minerals, 2018, 8(11): 520.
[59] Tateo F, Sabbadini R, Morandi N. Palygorskite and sepiolite occurrence in Pliocene Lake deposits along the River Nile: Evidence of an arid climate[J]. Journal of African Earth Sciences, 2000, 31(3/4): 633-645.
[60] Pozo M, Carretero M I, Galán E. Approach to the trace element geochemistry of non-marine sepiolite deposits: Influence of the sedimentary environment (Madrid Basin, Spain)[J]. Applied Clay Science, 2016, 131: 27-43.
[61] Draidia S, El Ouahabi M, Daoudi L, et al. Occurrences and genesis of palygorskite/sepiolite and associated minerals in the Barzaman formation, United Arab Emirates[J]. Clay Minerals, 2016, 51(5): 763-779.
[62] Cavalcante F, Belviso C, Bentivenga M, et al. Occurrence of palygorskite and sepiolite in upper Paleocene–middle Eocene marine deep sediments of the Lagonegro Basin (southern Apennines—Italy): Paleoenvironmental and provenance inferences[J]. Sedimentary Geology, 2011, 233(1/2/3/4): 42-52.
[63] Tosca N J, Masterson A L. Chemical controls on incipient Mg-silicate crystallization at 25°C: Implications for early and Late diagenesis[J]. Clay Minerals, 2014, 49(2): 165-194.
[64] Baldermann A, Mavromatis V, Dietzel M. Formation of hydrous Mg-silicates at low temperatures: New insights from sepiolite precipitation experiments[C]//Proceedings of the 19th EGU General Assembly Conference Abstracts. Vienna, Austria: EGU, 2017: 4349.
[65] 章人骏. 江西乐平县耐火白土概述[J]. 地质论评,1947,12(3/4):241-248.

Zhang Renjun. Overview of fire-resistant clay in Leping county, Jiangxi province[J]. Geological Review, 1947, 12(3/4): 241-248.
[66] 章人骏,杨振强. 中国海泡石的产状和成因[J]. 中国地质科学院院报,1986(15):45-51.

Zhang Renjun, Yang Zhenqiang. Occurrence and distribution of sepiolite in China[J]. Journal of Chinese Academy of Geological Science, 1987(15): 45-51.
[67] 颜佳新. 华南地区二叠纪栖霞组碳酸盐岩成因研究及其地质意义[J]. 沉积学报,2004,22(4):579-587.

Yan Jiaxin. Origin of Permian Chihsian carbonates from South China and its geological implications[J]. Acta Sedimentologica Sinica, 2004, 22(4): 579-587.
[68] Isphording W C. Discussion of the occurrence and origin of sedimentary palygorskite-sepiolite deposits[J]. Clays and Clay Minerals, 1973, 21(5): 391-401.
[69] 章人骏,丘翠薇,彭长琪,等. 湖南醴陵地区镁质粘土的特征及成因探讨[J]. 中国地质科学院宜昌地质矿产研究所所刊,1985(9):1-13.

Zhang Renjun, Qiu Cuiwei, Peng Changqi, et al. The characteristics of magnesium-rich clay in Liling area, Hunan province and a discussion on it’s genesis[J]. Bulletin of Yichang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 1985(9): 1-13.
[70] 李文光,张瑛. 我国海泡石矿床成矿条件及成因类型初探[J]. 陕西地质,1999,17(1):43-47.

Li Wenguang, Zhang Ying. A preliminary discussion on the ore-forming conditions and genetic types of sepiolite deposits in China[J]. Geology of Shaanxi, 1999, 17(1): 43-47.
[71] 杨振强,许俊文. 萍乐坳陷海泡石的形成及后期变化[J]. 中国地质科学院宜昌地质矿产研究所所刊,1986(12):31-54.

Yang Zhenqiang, Xu Junwen. The formation and post-sedimentary alternation of sepiolite in the Pingle Depression[J]. Bulletin of Yichang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 1986(12): 31-54.
[72] 任磊夫. 粘土矿物与粘土岩[M]. 北京:地质出版社,1992.

Ren Leifu. Clay minerals and clay rocks[M]. Beijng: Geological Publishing House, 1992.
[73] 杨振强. 扬子地台东南边缘早二叠世海泡石沉积与盆地缺氧环境[J]. 中国地质科学院宜昌地质矿产研究所所刊,1992(18):111-121.

Yang Zhenqiang. Early Permian sepiolite sedimentation and basin anoxic environments at the southeastern edge of Yangtze Platform[J]. Bulletin of Yichang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 1992(18): 111-121.
[74] 颜佳新,施春华,李军虹,等. 华南地区栖霞组菊花状天青石的交代及其地质意义[J]. 岩石矿物学杂志,2001,20(1):75-83.

Yan Jiaxin, Shi Chunhua, Li Junhong, et al. Replacement of chrysanthemum-shaped celestite in the Chihsia Formation of South China and its geological implications[J]. Acta Petrologica et Mineralogica, 2001, 20(1): 75-83.
[75] Yan J X, Carlson E H. Nodular celestite in the Chihsia Formation (Middle Permian) of South China[J]. Sedimentology, 2003, 50(2): 265-278.
[76] Wilkinson B H, Algeo T J. Sedimentary carbonate record of calcium-magnesium cycling[J]. American Journal of Science, 1989, 289(10): 1158-1194.
[77] Stanley S M, Hardie L A. Secular oscillations in the carbonate mineralogy of reef-building and sediment- producing organisms driven by tectonically forced shifts in seawater chemistry[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 144(1/2): 3-19.
[78] Lowenstein T K, Timofeeff M N, Brennan S T, et al. Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions[J]. Science, 2001, 294(5544): 1086-1088.
[79] Horita J, Zimmermann H, Holland H D. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites[J]. Geochimica et Cosmochimica Acta, 2002, 66(21): 3733-3756.
[80] 吕炳全,蔡进功,刘峰,等. 栖霞组中台缘斜坡上升流沉积相及其与烃源岩的关系[J]. 海洋地质与第四纪地质,2010,30(5):109-118.

Bingquan Lü, Cai Jingong, Liu Feng, et al. Upwelling deposits at the marginal slope of a carbonate platform in Qixia Stage and its relation with hydrocarbon source rocks[J]. Marine Geology & Quaternary Geology, 2010, 30(5): 109-118.
[81] Cai Z X, Li J, Chen H R, et al. Genesis of Mg-phyllosilicate occurrences in the Middle Permian marine successions of South China[J]. Applied Clay Science, 2019, 181: 105242.
[82] Murchey B L, Jones D L. A mid-Permian chert event: Widespread deposition of biogenic siliceous sediments in coastal, island arc and oceanic basins[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 96(1/2): 161-174.
[83] Kidder D L, Erwin D H. Secular distribution of biogenic silica through the Phanerozoic: Comparison of silica-replaced fossils and bedded cherts at the series level[J]. The Journal of Geology, 2001, 109(4): 509-522.
[84] Kametaka M, Takebe M, Nagai H, et al. Sedimentary environments of the Middle Permian phosphorite–chert complex from the northeastern Yangtze Platform, China; the Gufeng Formation: A continental shelf radiolarian chert[J]. Sedimentary Geology, 2005, 174(3/4): 197-222.
[85] Hesse R. Silica diagenesis: Origin of inorganic and replacement cherts[J]. Earth-Science Reviews, 1989, 26(1/2/3): 253-284.
[86] 沙庆安,吴望始,傅家谟. 黔桂地区二叠系综合研究:兼论含油气性[M]. 北京:科学出版社,1990.

Sha Qing’an, Wu Wangshi, Fu Jiamo. Comprehensive research on permian in Guizhou: Guangxi area and its petroleum potential[M]. Beijing: Science Press, 1990.
[87] Qiu Z, Wang Q C. Geochemical evidence for submarine hydrothermal origin of the Middle-Upper Permian chert in Laibin of Guangxi, China[J]. Science China Earth Sciences, 2011, 54(7): 1011-1023.
[88] Gao P, He Z L, Lash G G, et al. Mixed seawater and hydrothermal sources of nodular chert in Middle Permian limestone on the eastern Paleo-Tethys margin (South China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 551: 109740.
[89] 赵振洋,李双建,王根厚. 中下扬子北缘中二叠统孤峰组层状硅质岩沉积环境、成因及硅质来源探讨[J]. 地球科学进展,2020,35(2):137-153.

Zhao Zhenyang, Li Shuangjian, Wang Genhou. Discussion on sedimentary environments, origin and source of Middle Permian Gufeng Formation bedded cherts in the northern margin of the Middle-Lower Yangtze area[J]. Advances in Earth Science, 2020, 35(2): 137-153.
[90] 芦飞凡,谭秀成,钟原,等. 四川盆地西北部二叠系栖霞组准同生期砂糖状白云岩成因及地质意义[J]. 石油勘探与开发,2020,47(6):1134-1148.

Lu Feifan, Tan Xiucheng, Zhong Yuan, et al. Origin of the penecontemporaneous sucrosic dolomite and its geological implications in the Permian Qixia Formation, northwestern Sichuan Basin, Southwest China[J]. Petroleum Exploration and Development, 2020,47(6):1134-1148.
[91] Luo Z L, Jin Y Z, Zhao X K. The Emei Taphrogenesis of the upper Yangtze Platform in South China[J]. Geological Magazine, 1990, 127(5): 393-405.
[92] 程成,李双应,赵大千,等. 扬子地台北缘中上二叠统层状硅质岩的地球化学特征及其对古地理、古海洋演化的响应[J]. 矿物岩石地球化学通报,2015,34(1):155-166.

Cheng Cheng, Li Shuangying, Zhao Daqian, et al. Geochemical characteristics of the Middle-Upper Permian bedded cherts in the northern margin of the Yangtze Block and its response to the evolution of paleogeography and paleo-ocean[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1): 155-166.
[93] Wang Y, Peate I U, Luo Z H, et al. Rifting in SW China: Structural and sedimentary investigation of the initial crustal response to emplacement of the Permian Emeishan LIP[J]. Geological Magazine, 2019, 156(4): 745-758.
[94] Hecht L, Freiberger R, Gilg H A, et al. Rare earth element and isotope (C, O, Sr) characteristics of hydrothermal carbonates: Genetic implications for dolomite-hosted talc mineralization at Göpfersgrün (Fichtelgebirge, Germany)[J]. Chemical Geology, 1999, 155(1/2): 115-130.
[95] Shin D, Lee I. Carbonate-hosted talc deposits in the contact aureole of an igneous intrusion (Hwanggangri mineralized zone, South Korea): Geochemistry, phase relationships, and stable isotope studies[J]. Ore Geology Reviews, 2003, 22(1/2): 17-39.
[96] Bjerga A, Konopásek J, Pedersen R B. Talc–carbonate alteration of ultramafic rocks within the Leka Ophiolite Complex, Central Norway[J]. Lithos, 2015, 227: 21-36.
[97] Dekov V M, Cuadros J, Shanks W C, et al. Deposition of talc — kerolite–smectite — smectite at seafloor hydrothermal vent fields: Evidence from mineralogical, geochemical and oxygen isotope studies[J]. Chemical Geology, 2008, 247(1/2): 171-194.
[98] Hodgkinson M R S, Webber A P, Roberts S, et al. Talc-dominated seafloor deposits reveal a new class of hydrothermal system[J]. Nature Communications, 2015, 6(1): 10150.
[99] Wan Y, Wang X L, Chou I M, et al. An experimental study of the formation of Talc through CaMg(CO3)2–SiO2–H2O Interaction at 100-200°C and vapor-saturation pressures[J]. Geofluids, 2017, 2017:3942826.
[100] 张如柏. 四川发现层控滑石矿床[J]. 科学通报,1981(19):1215.

Zhang Rubai. Stratabound talc deposit in Sichuan province[J]. Chinese Science Bulletin, 1981(19): 1215.
[101] Erosion Hillier S., sedimentation and sedimentary origin of clays[M]//Velde B. Origin and mineralogy of clays. Berlin Heidelberg: Springer, 1995.
[102] Jiménez-Espinosa R, Jiménez-Millán J. Calcrete development in mediterranean colluvial carbonate systems from SE Spain[J]. Journal of Arid Environments, 2003, 53(4): 479-489.
[103] Khoury H N, Eberl D D, Jones B F. Origin of magnesium clays from the Amargosa Desert, Nevada[J]. Clays and Clay Minerals, 1982, 30(5): 327-336.
[104] Hover V C, Walter L M, Peacor D R, et al. Mg-smectite authigenesis in a marine evaporative environment, Salina Ometepec, Baja California[J]. Clays and Clay Minerals, 1999, 47(3): 252-268.
[105] Birsoy R. Formation of sepiolite-palygorskite and related minerals from solution[J]. Clays and Clay Minerals, 2002, 50(6): 736-745.
[106] Nakajima Y, Watanabe T, Sudo T. Fourier analysis of the line profiles of talc synthesized from sepiolite[J]. Journal of Applied Crystallography, 1972, 5(4): 275-278.
[107] Otsuka R, Sakamoto T, Hara Y. Phase transformations of sepiolite under hydrothermal conditions[J]. Journal of the Clay Science Society of Japan, 1974, 14(1): 8-19.
[108] Güven N, Carney L L. The hydrothermal transformation of sepiolite to stevensite and the effect of added chlorides and hydroxides[J]. Clays and Clay Minerals, 1979, 27(4): 253-260.
[109] Wu Q, Ramezani J, Zhang H, et al. Calibrating the guadalupian series (Middle Permian) of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 361-372.