[1] Liu X M, Hardisty D S, Lyons T W, et al. Evaluating the fidelity of the cerium paleoredox tracer during variable carbonate diagenesis on the Great Bahamas Bank[J]. Geochimica et Cosmochimica Acta, 2019, 248: 25-42.
[2] Hoffman P F, Kaufman A J, Halverson G P, et al. A neoproterozoic snowball earth[J]. Science, 1998, 281(5381): 1342-1346.
[3] Hoffman P F. Pan-glacial—a third state in the climate system[J]. Geology Today, 2009, 25(3): 100-107.
[4] Hoffman P F, Abbot D S, Ashkenazy Y, et al. Snowball Earth climate dynamics and Cryogenian geology-geobiology[J]. Science Advances, 2017, 3(11): e1600983.
[5] Hoffman P F, Schrag D P. The snowball Earth hypothesis: Testing the limits of global change[J]. Terra Nova, 2002, 14(3): 129-155.
[6] Holland H D. The oxygenation of the atmosphere and oceans[J]. Philosophical Transactions of the Royal Society B, 2006, 361(1470): 903-915.
[7] Canfield D E, Poulton S W, Narbonne G M. Late-neoproterozoic deep-ocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5808): 92-95.
[8] Sahoo S K, Planavsky N J, Kendall B, et al. Ocean oxygenation in the wake of the Marinoan glaciation[J]. Nature, 2012, 489(7417): 546-549.
[9] Cohen P A, Macdonald F A, Pruss S, et al. Fossils of putative marine algae from the Cryogenian glacial interlude of Mongolia[J]. Palaios, 2015, 30(3): 238-247.
[10] Cohen P A, Macdonald F A. The Proterozoic record of eukaryotes[J]. Paleobiology, 2015, 41(4): 610-632.
[11] Knoll A H, Carroll S E. Early animal evolution: Emerging views from comparative biology and geology[J]. Science, 1999, 284(5423): 2129-2137.
[12] Kirschvink J L. Late Proterozoic low-latitude global glaciation: The snowball Earth[M]//Schopf J W, Klein C. The proterozoic biosphere: A multidisciplinary study. New York: Cambridge University Press, 1992: 52-57.
[13] Hyde W T, Crowley T J, Baum S K, et al. Neoproterozoic 'snowball Earth' simulations with a coupled climate/ice-sheet model[J]. Nature, 2000, 405(6785): 425-429.
[14] Ye Q, Tong J N, Xiao S H, et al. The survival of benthic macroscopic phototrophs on a Neoproterozoic snowball Earth[J]. Geology, 2015, 43(6): 507-510.
[15] Rieu R, Allen P A, Plötze M, et al. Climatic cycles during a Neoproterozoic “snowball” glacial epoch[J]. Geology, 2007, 35(4): 299-302.
[16] Le Heron D P, Busfield M E, Le Ber E, et al. Neoproterozoic ironstones in northern Namibia: Biogenic precipitation and Cryogenian glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 369: 48-57.
[17] Benn D I, Le Hir G, Bao H M, et al. Orbitally forced ice sheet fluctuations during the Marinoan Snowball Earth glaciation[J]. Nature Geoscience, 2015, 8(9): 704-707.
[18] 李美俊,王铁冠. 扬子区新元古代“雪球”时期古环境的分子地球化学证据[J]. 地质学报,2007,81(2):220-229.

Li Meijun, Wang Tieguan. Molecular geochemical evidence for the Paleoenvironment of the Late Neoproterozoic "Snowball Earth" age in the Yangtze Region[J]. Acta Geologica Sinica, 2007, 81(2): 220-229.
[19] Planavsky N J, Rouxel O J, Bekker A, et al. The evolution of the marine phosphate reservoir[J]. Nature, 2010, 467(7319): 1088-1090.
[20] Condon D, Zhu M Y, Bowring S, et al. U-Pb ages from the neoproterozoic Doushantuo formation, China[J]. Science, 2005, 308(5718): 95-98.
[21] Zhang S H, Jiang G Q, Zhang J M, et al. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on Late neoproterozoic glaciations[J]. Geology, 2005, 33(6): 473-476.
[22] Ali K A, Stern R J, Manton W I, et al. Neoproterozoic diamictite in the eastern desert of Egypt and northern Saudi Arabia: Evidence of ~750 Ma glaciation in the Arabian–Nubian shield?[J]. International Journal of Earth Sciences, 2010, 99(4): 705-726.
[23] Ali K K A, Stern R J, Manton W I, et al. Geochemical, U–Pb zircon, and Nd isotope investigations of the neoproterozoic Ghawjah Metavolcanic rocks, Northwestern Saudi Arabia[J]. Lithos, 2010, 120(3/4): 379-392.
[24] Zhang K, Zhu X K, Yan B. A refined dissolution method for rare earth element studies of bulk carbonate rocks[J]. Chemical Geology, 2015, 412: 82-91.
[25] 冯东,陈多福,刘芊. 新元古代晚期盖帽碳酸盐岩的成因与"雪球地球"的终结机制[J]. 沉积学报,2006,24(2):235-241.

Feng Dong, Chen Duofu, Liu Qian. Formation of Late Neoproterozoic cap carbonates and termination mechanism of “Snowball Earth”[J]. Acta Sedimentologica Sinica, 2006, 24(2): 235-241.
[26] Lang X G, Chen J T, Cui H, et al. Cyclic cold climate during the Nantuo Glaciation: Evidence from the Cryogenian Nantuo Formation in the Yangtze Block, South China[J]. Precambrian Research, 2018, 310: 243-255.
[27] 卫炜. 成冰纪到寒武纪早期地球表面氧化还原状态演化[D]. 南京:南京大学,2018.

Wei Wei. Redox evolutions at earth’s surface from the cryogenian to Early Cambrian[D]. Nanjing: Nanjing University, 2018.
[28] Ling H F, Chen X, Li D, et al. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater[J]. Precambrian Research, 2013, 225: 110-127.
[29] Shen Y N, Zhang T G, Hoffman P F. On the coevolution of Ediacaran oceans and animals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(21): 7376-7381.
[30] Jiang G Q, Sohl L E, Christie-Blick N. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze Block (South China): Paleogeographic implications[J]. Geology, 2003, 31(10): 917-920.
[31] Kennedy M J, Christie-Blick N, Prave A R. Carbon isotopic composition of Neoproterozoic glacial carbonates as a test of paleoceanographic models for snowball Earth phenomen[J]. Geology, 2001, 29(12): 1135-1138.
[32] Kennedy M, Mrofka D, von der Borch C. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate[J]. Nature, 2008, 453(7195): 642-645.
[33] 刘鹏举,尹崇玉,唐烽,等. 瓮安生物群中后生动物化石研究进展及问题讨论[J]. 地质论评,2007,53(6):728-735.

Liu Pengju, Yin Chongyu, Tang Feng, et al. Progresses and questions on studying metazoan fossils of the Weng’an Biota[J]. Geological Review, 2007, 53(6): 728-735.
[34] Bolhar R, van Kranendonk M J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates[J]. Precambrian Research, 2007, 155(3/4): 229-250.
[35] Li G J, Chen J, Ji J F, et al. Global cooling forced increase in marine strontium isotopic ratios: Importance of mica weathering and a kinetic approach[J]. Earth and Planetary Science Letters, 2007, 254(3/4): 303-312.
[36] Frimmel H E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator[J]. Chemical Geology, 2009, 258(3/4): 338-353.
[37] Banner J L, Hanson G N. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis[J]. Geochimica et Cosmochimica Acta, 1990, 54(11): 3123-3137.
[38] Zhao Y Y, Zheng Y F, Chen F K. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China[J]. Chemical Geology, 2009, 265(3/4): 345-362.
[39] 沈洪娟,顾尚义,赵思凡,等. 华南南华纪南沱冰期海洋环境的沉积地球化学记录:来自黔东部南华系南沱组白云岩碳氧同位素和微量元素的证据[J]. 地质论评,2020,66(1):214-228.

Shen Hongjuan, Gu Shangyi, Zhao Sifan, et al. The sedimentary geochemical records of ocean environment during the Nantuo (Marinoan) glaciation in South China: Carbon and oxygen isotopes and trace element compositions of dolostone in Nantuo Formation, Nanhuan System, in eastern Guizhou[J]. Geological Review, 2020, 66(1): 214-228.
[40] Wang J, Li Z X. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1/2/3/4): 141-158.
[41] Zhao G C, Cawood P A. Precambrian geology of China[J]. Precambrian Research, 2012, 222-223: 13-54.
[42] Zheng Y F, Xiao W J, Zhao G C. Introduction to tectonics of China[J]. Gondwana Research, 2013, 23(4): 1189-1206.
[43] 杨明桂,祝平俊,熊清华,等. 新元古代—早古生代华南裂谷系的格局及其演化[J]. 地质学报,2012,86(9):1367-1375.

Yang Minggui, Zhu Pingjun, Xiong Qinghua, et al. Framework and evolution of the Neoproterozoic-Early Paleozoic South-China rift system[J]. Acta Geologica Sinica, 2012, 86(9): 1367-1375.
[44] Zhang Q R, Chu X L, Feng L J. Chapter 32 neoproterozoic glacial records in the Yangtze Region, China[M]//Arnaud E, Halverson G P, Shields-Zhou G. The geological record of neoproterozoic glaciations. London: Geological Society, 2011, 36: 357-366.
[45] Jiang G Q, Shi X Y, Zhang S H, et al. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in south China[J]. Gondwana Research, 2011, 19(4): 831-849.
[46] Huang J, Feng L J, Lu D B, et al. Multiple climate cooling prior to Sturtian glaciations: Evidence from chemical index of alteration of sediments in South China[J]. Scientific Reports, 2014, 4: 6868.
[47] Gu S Y, Fu Y, Long J X. Predominantly ferruginous conditions in south china during the marinoan glaciation: Insight from REE geochemistry of the syn-glacial dolostone from the nantuo formation in Guizhou province, China[J]. Minerals, 2019, 9(6): 348.
[48] 赵思凡,顾尚义,沈洪娟,等. 华南地区南沱冰期海洋氧化还原环境研究:来自贵州松桃南沱组白云岩稀土元素地球化学的指示[J]. 沉积学报,2020,38(6):1140-1151.

Zhao Sifan, Gu Shangyi, Shen Hongjuan, et al. Ocean redox environment in the nantuo ice age of South China: An indication of the rare earth element geochemistry in the dolomites from the Nantuo Formation in Guizhou province[J]. Acta Sedimentologica Sinica, 2020, 38(6): 1140-1151.
[49] Zhang S H, Jiang G Q, Han Y G. The age of the Nantuo Formation and Nantuo glaciation in South China[J]. Terra Nova, 2008, 20(4): 289-294.
[50] Bao X J, Zhang S H, Jiang G Q, et al. Cyclostratigraphic constraints on the duration of the Datangpo Formation and the onset age of the Nantuo (Marinoan) glaciation in South China[J]. Earth and Planetary Science Letters, 2018, 483: 52-63.
[51] 周琦,杜远生,袁良军,等. 古天然气渗漏沉积型锰矿床找矿模型:以黔湘渝毗邻区南华纪“大塘坡式”锰矿为例[J]. 地质学报,2017,91(10):2285-2298.

Zhou Qi, Du Yuansheng, Yuan Liangjun, et al. Exploration models of ancient natural gas seep sedimentary-type manganese ore deposit: A case study of the nanhua period “Datangpo” type manganese ore in the conjunction area of Guizhou, Hunan and Chongqing[J]. Acta Geologica Sinica, 2017, 91(10): 2285-2298.
[52] 戴传固,陈建书,卢定彪,等. 黔东及邻区武陵运动及其地质意义[J]. 地质力学学报,2010,16(1):78-84.

Dai Chuangu, Chen Jianshu, Lu Dingbiao, et al. Wuling orogeny in eastern Guizhou and its adjacent regions and its geological significance[J]. Journal of Geomechanics, 2010, 16(1): 78-84.
[53] McLennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.
[54] Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater[J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725.
[55] Taylor S R, McLennan S M, McCulloch M T. Geochemistry of loess, continental crustal composition and crustal model ages[J]. Geochimica et Cosmochimica Acta, 1983, 47(11): 1897-1905.
[56] Lawrence M G, Greig A, Collerson K D, et al. Rare earth element and yttrium variability in South East Queensland waterways[J]. Aquatic Geochemistry, 2006, 12(1): 39-72.
[57] Sholkovitz E R, Landing W M, Lewis B L. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater[J]. Geochimica et Cosmochimica Acta, 1994, 58(6): 1567-1579.
[58] 吴斌,吴盾,万宗启,等. 淮南潘二矿太原组灰岩稀土元素特征及沉积环境的分析[J]. 中国科学技术大学学报,2013,43(5):355-362.

Wu Bin, Wu Dun, Wan Zongqi, et al. Geochemical characteristics of REE in limestone of the Taiyuan Formation, Paner coalmine and their constraint on depositional environment[J]. Journal of University of Science and Technology of China, 2013, 43(5): 355-362.
[59] 赵彦彦. 皖南新元古界蓝田组碳酸盐岩沉积地球化学[D]. 合肥:中国科学技术大学,2009.

Zhao Yanyan. Sedimentary geochemistry of neoproterozoic carbonates in the Lantian Formation from southern Anhui in South China[D]. Hefei: University of Science and Technology of China, 2009.
[60] 李定龙. 皖北奥陶系碳酸盐岩稀土元素地球化学特征及其古岩溶意义[J]. 地学前缘,2000,7(2):353-365.

Li Dinglong. REE geochemical features of carbonate rocks and its paleokarst significane in the Ordovician in northern Anhui[J]. Earth Science Frontiers, 2000, 7(2): 353-365.
[61] Kamber B S, Webb G E. The geochemistry of Late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history[J]. Geochimica et Cosmochimica Acta, 2001, 65(15): 2509-2525.
[62] Cherniak D J. REE diffusion in calcite[J]. Earth and Planetary Science Letters, 1998, 160(3/4): 273-287.
[63] Tanaka K, Kawabe I. REE abundances in ancient seawater inferred from marine limestone and experimental REE partition coefficients between calcite and aqueous solution[J]. Geochemical Journal, 2006, 40(5): 425-435.
[64] Haley B A, Klinkhammer G P, McManus J. Rare earth elements in pore waters of marine sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265-1279.
[65] Tepe N, Bau M. Importance of nanoparticles and colloids from volcanic ash for riverine transport of trace elements to the ocean: Evidence from glacial-fed rivers after the 2010 eruption of Eyjafjallajökull Volcano, Iceland[J]. Science of the Total Environment, 2014, 488-489: 243-251.
[66] Poulton S W, Raiswell R. Chemical and physical characteristics of iron oxides in riverine and glacial meltwater sediments[J]. Chemical Geology, 2005, 218(3/4): 203-221.
[67] Bhatia M P, Kujawinski E B, Das S B, et al. Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean[J]. Nature Geoscience, 2013, 6(4): 274-278.
[68] Nozaki Y, Zhang J, Amakawa H. The fractionation between Y and Ho in the marine environment[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 329-340.
[69] 陈松,傅雪海,桂和荣,等. 皖北新元古界望山组灰岩微量元素地球化学特征[J]. 古地理学报,2012,14(6):813-820.

Chen Song, Fu Xuehai, Gui Herong, et al. Geochemical characteristics of trace elements in limestone of the Neoproterozoic Wangshan Formation in northern Anhui province[J]. Journal of Palaeogeography, 2012, 14(6): 813-820.
[70] Nothdurft L D, Webb G E, Kamber B S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 263-283.
[71] 孙林华,桂和荣,贺振宇. 皖北灵璧地区新元古代灰岩的稀土元素特征[J]. 稀土,2010,31(6):32-40.

Sun Linhua, Gui Herong, He Zhenyu. Rare earth element characteristics of the neoproterozoic limestones in Lingbi district, northern Anhui province[J]. Chinese Rare Earths, 2010, 31(6): 32-40.
[72] Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557-1565.
[73] Webb G E, Nothdurft L D, Kamber B S, et al. Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: A sequence through neomorphism of aragonite to calcite[J]. Sedimentology, 2009, 56(5): 1433-1463.
[74] Ward J F, Verdel C, Campbell M J, et al. Rare earth element geochemistry of Australian Neoproterozoic carbonate: Constraints on the Neoproterozoic oxygenation events[J]. Precambrian Research, 2019, 335: 105471.
[75] Bau M, Möller P, Dulski P. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling[J]. Marine Chemistry, 1997, 56(1/2): 123-131.
[76] Huang J, Chu X L, Jiang G Q, et al. Hydrothermal origin of elevated iron, manganese and redox-sensitive trace elements in the c. 635 Ma Doushantuo cap carbonate[J]. Journal of the Geological Society, 2011, 168(3): 805-816.
[77] Swart P K. The geochemistry of carbonate diagenesis: The past, present and future[J]. Sedimentology, 2015, 62(5): 1233-1304.
[78] Sawaki Y, Ohno T, Tahata M, et al. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China[J]. Precambrian Research, 2010, 176(1/2/3/4): 46-64.
[79] Zhou C M, Tucker R, Xiao S H, et al. New constraints on the ages of Neoproterozoic glaciations in south China[J]. Geology, 2004, 32(5): 437-440.
[80] de Baar H J, German C R, Elderfield H, et al. Rare earth element distributions in anoxic waters of the Cariaco Trench[J]. Geochimica et Cosmochimica Acta, 1988, 52(5): 1203-1219.
[81] Kamber B S. Archean mafic-ultramafic volcanic landmasses and their effect on ocean-atmosphere chemistry[J]. Chemical Geology, 2010, 274(1/2): 19-28.
[82] Orians K J, Bruland K W. The biogeochemistry of aluminum in the Pacific Ocean[J]. Earth and Planetary Science Letters, 1986, 78(4): 397-410.
[83] Langmuir D, Herman J S. The mobility of thorium in natural waters at low temperatures[J]. Geochimica et Cosmochimica Acta, 1980, 44(11): 1753-1766.
[84] Brocks J J, Jarrett A J M, Sirantoine E, et al. The rise of algae in Cryogenian oceans and the emergence of animals[J]. Nature, 2017, 548(7669): 578-581.
[85] Hoffman P F. Cryoconite pans on Snowball Earth: Supraglacial oases for Cryogenian eukaryotes?[J]. Geobiology, 2016, 14(6): 531-542.
[86] Johnson B W, Poulton S W, Goldblatt C. Marine oxygen production and open water supported an active nitrogen cycle during the Marinoan Snowball Earth[J]. Nature Communications, 2017, 8(1): 1316.