[1] 朱筱敏. 沉积岩石学[M]. 北京:石油工业出版社,2008.

Zhu Xiaomin. Sedimentary petrology[M]. Beijing: Petroleum Industry Press, 2008.
[2] Wadell H. Volume, shape, and roundness of rock particles[J]. Journal of Geology, 1932, 40(5): 443-451.
[3] 匡立春,唐勇,雷德文,等. 准噶尔盆地玛湖凹陷斜坡区三叠系百口泉组扇控大面积岩性油藏勘探实践[J]. 中国石油勘探,2014,19(6):14-23.

Kuang Lichun, Tang Yong, Lei Dewen, et al. Exploration of fan-controlled large-area lithologic oil reservoirs of Triassic Baikouquan Formation in slope zone of Mahu Depression in Junggar Basin[J]. China Petroleum Exploration, 2014, 19(6): 14-23.
[4] 唐勇,徐洋,瞿建华,等. 玛湖凹陷百口泉组扇三角洲群特征及分布[J]. 新疆石油地质,2014,35(6):628-635.

Tang Yong, Xu Yang, Qu Jianhua, et al. Fan-delta group characteristics and its distribution of the Triassic Baikouquan reservoirs in Mahu Sag of Junggar Basin[J]. Xinjiang Petroleum Geology, 2014, 35(6): 628-635.
[5] 雷德文,陈刚强,刘海磊,等. 准噶尔盆地玛湖凹陷大油(气)区形成条件与勘探方向研究[J]. 地质学报,2017,91(7):1604-1619.

Lei Dewen, Chen Gangqiang, Liu Hailei, et al. Study on the forming conditions and exploration fields of the Mahu giant oil (gas) province, Junggar Basin[J]. Acta Geologica Sinica, 2017, 91(7): 1604-1619.
[6] 张昌民,王绪龙,朱锐,等. 准噶尔盆地玛湖凹陷百口泉组岩石相划分[J]. 新疆石油地质,2016,37(5):606-614.

Zhang Changmin, Wang Xulong, Zhu Rui, et al. Lithofacies classification of Baikouquan Formation in Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2016, 37(5): 606-614.
[7] 周俊林,王仲军,丁超,等. 准噶尔盆地乌尔禾油田高自然伽马砂砾岩特征及其沉积微相研究:以乌36井区百口泉组为例[J]. 沉积学报,2014,32(4):734-743.

Zhou Junlin, Wang Zhongjun, Ding Chao, et al. High GR glutinite feature and micro-sedimentary facies in Wuerhe oil-field, Junggar Basin: Taking the Baikouquan Group in Wu 36 area as an example[J]. Acta Sedimentologica Sinica, 2014, 32(4): 734-743.
[8] Tao J Y, Zhang C M, Qu J H, et al. Application of gravel roundness quantitative description in conglomerates reservoirs[J]. Chemical Engineering Transactions, 2017, 62: 457-462.
[9] Resentini A, Andò S, Garzanti E. Quantifying roundness of detrital minerals by image analysis: Sediment transport, shape effects, and provenance implications[J]. Journal of Sedimentary Research, 2018, 88(2):276-289.
[10] 于兴河,瞿建华,谭程鹏,等. 玛湖凹陷百口泉组扇三角洲砾岩岩相及成因模式[J]. 新疆石油地质,2014,35(6):619-627.

Yu Xinghe, Qu Jianhua, Tan Chengpeng, et al. Conglomerate lithofacies and origin models of fan deltas of Baikouquan Formation in Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2014, 35(6): 619-627.
[11] 张顺存,黄立良,冯右伦,等. 准噶尔盆地玛北地区三叠系百口泉组储层成岩相特征[J]. 沉积学报,2018,36(2):354-365.

Zhang Shuncun, Huang Liliang, Feng Youlun, et al. Diagenetic facies of Triassic Baikouquan Formation in Mabei area, Junggar Basin[J]. Acta Sedimentologica Sinica, 2018, 36(2): 354-365.
[12] 袁瑞,朱锐,瞿建华,等. 微电阻率成像测井双属性岩石相划分方法:以准噶尔盆地玛湖凹陷百口泉组为例[J]. 东北石油大学学报,2018,42(1):14-23.

Yuan Rui, Zhu Rui, Qu Jianhua, et al. Division method of double property lithofacies based on microresistivity imaging logs: A case study of Baikouquan Formation in Mahu Sag, Junggar Basin[J]. Journal of Northeast Petroleum University, 2018, 42(1): 14-23.
[13] 张顺存,邹妞妞,史基安,等. 准噶尔盆地玛北地区三叠系百口泉组沉积模式[J]. 石油与天然气地质,2015,36(4):640-650.

Zhang Shuncun, Zou Niuniu, Shi Ji’an,et al. Depositional model of the Triassic Baikouquan Formation in Mabei area of Junggar Basin[J]. Oil & Gas Geology, 2015, 36(4): 640-650.
[14] 孟祥超,蒋庆平,李亚哲,等. 同生逆断层控制的砂砾岩沉积模式及有利储集相带分布:以玛湖凹陷南斜坡白25井区上乌尔禾组为例[J]. 沉积学报,2017,35(6):1225-1240.

Meng Xiangchao, Jiang Qingping, Li Yazhe, et al. Glutenite sedimentary pattern under the control of contemporaneous reverse thrust and favorable reservoir facies belt distribution: Taking P3w, B25 Block, Mahu Sag, as an example[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1225-1240.
[15] 李兵,党玉芳,贾春明,等. 准噶尔盆地西北缘中拐—五八区二叠系碎屑岩沉积相特征[J]. 天然气地球科学,2011,22(3):432-439.

Li Bing, Dang Yufang, Jia Chunming, et al. Sedimentary facies of Permian clastic rocks in Zhongguai-Wuba area in northwestern margin of Junggar Basin[J]. Natural Gas Geoscience, 2011, 22(3): 432-439.
[16] 张昌民,刘江艳,潘进,等. 玛湖凹陷百口泉组砂砾岩建筑结构要素层次分析[J]. 新疆石油地质,2018,39(1):23-34.

Zhang Changmin, Liu Jiangyan, Pan Jin, et al. Hierarchical architectural element analysis for sandy conglomerate deposits of Baikouquan Formation, Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1): 23-34.
[17] 赵飞. 乌尔禾油田乌36井区块三叠系百口泉组沉积体系与储层特征研究[D]. 西安:西北大学,2010.

Zhao Fei. Baikouquan Formation of Triassic of Wu36 well block in Wuerhe oilfield[D]. Xi’an: Northwest University, 2010.
[18] 单祥,邹志文,孟祥超,等. 准噶尔盆地环玛湖地区三叠系百口泉组物源分析[J]. 沉积学报,2016,34(5):930-939.

Shan Xiang, Zou Zhiwen, Meng Xiangchao, et al. Provenance analysis of Triassic Baikouquan Formation in the area around Mahu Depression, Junggar Basin[J]. Acta Sedimentologica Sinica, 2016, 34(5): 930-939.
[19] 邹志文,李辉,徐洋,等. 准噶尔盆地玛湖凹陷下三叠统百口泉组扇三角洲沉积特征[J]. 地质科技情报,2015,34(2):20-26.

Zou Zhiwen, Li Hui, Xu Yang, et al. Sedimentary characteristics of the Baikouquan Formation, Lower Triassic in the Mahu Depression, Junggar Basin[J]. Geological Science and Technology Information, 2015, 34(2): 20-26.
[20] Asmussen P, Conrad O, Günther A, et al. Semi-automatic segmentation of petrographic thin section images using a “seeded-region growing algorithm” with an application to characterize wheathered subarkose sandstone[J]. Computers & Geosciences, 2015, 83: 89-99.
[21] Karunatillake S, McLennan S M, Herkenhoff K E, et al. A martian case study of segmenting images automatically for granulometry and sedimentology, Part 1: Algorithm[J]. Icarus, 2014, 229: 400-407.
[22] 叶润青,牛瑞卿,张良培. 基于多尺度分割的岩石图像矿物特征提取及分析[J]. 吉林大学学报(地球科学版),2011,41(4):1253-1261.

Ye Runqing, Niu Ruiqing, Zhang Liangpei. Mineral features extraction and analysis based on multiresolution segmentation of petrographic images[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(4): 1253-1261.
[23] Tao J Y, Zhang C M, Qu J H, et al. A De-flat roundness method for particle shape quantitative characterization[J]. Arabian Journal of Geosciences, 2018, 11(15): 414.
[24] Cox E P. A method of assigning numerical and percentage values to the degree of roundness of sand grains[J]. Journal of Paleontology, 1927, 1(3): 179-183.
[25] Cox R, Lopes W A, Jahn K L. Quantitative roundness analysis of coastal boulder deposits[J]. Marine Geology, 2018,396: 114-141.
[26] Illenberger W K, Reddering J S V. An evaluation of shape indices as palaeoenvironmental indicators using quartzite and metavolcanic clasts in Upper Cretaceous to Palaeogene beach, river and submarine fan conglomerates[J]. Sedimentology,1993, 40(5):1019-1020.
[27] 祁兴芬,庄振业,韩德亮,等. 秦皇岛市海岸风成沙丘的研究[J]. 中国海洋大学学报,2004,34(4):617-624.

Qi Xingfen, Zhuang Zhenye, Han Deliang, et al. Research on the aeolian dunes in the Qinhuangdao area[J]. Periodical of Ocean University of China, 2004, 34(4): 617-624.
[28] 张昌民,王绪龙,尹太举,等. 新疆乌伦古湖冰滑痕特征及其形成机理[J]. 地质论评,2017,63(1):35-49.

Zhang Changmin, Wang Xulong, Yin Taiju, et al. Characteristics and formation mechanism of ice slide structures on the coast of Ulungur Lake, Xinjiang[J]. Geological Review, 2017, 63(1): 35-49.
[29] 李吉均,周尚哲. 冰碛石的形态和表面特征[J]. 冰川冻土,1984,6(3):27-30.

Li Jijun, Zhou Shangzhe. Shapes and features of glaciogenic gravels[J]. Journal of Glaciology and Geocryology, 1984, 6(3): 27-30.
[30] Mazzullo J, Ritter C. Influence of sediment source on the shapes and surface textures of glacial quartz sand grains[J]. Geology, 1991, 19(4): 384-388.
[31] Górska-Zabielska M. Roundness and matt degree of quartz grain surfaces in (fluvio-)glacial deposits of the Pomeranian Stage (Weichselian) in Northeast Germany[J]. Geologos, 2015, 21(2): 117-125.
[32] Roussillon T, PiégayH, SivignonI, et al. Automatic computation of pebble roundness using digital imagery and discrete geometry[J]. Computers &Geosciences, 2009, 35(10): 1992-2000.
[33] Cassel M, Piégay H, Lavé J, et al. Evaluating a 2D image-based computerized approach for measuring riverine pebble roundness[J]. Geomorphology, 2018, 311: 143-157.
[34] Miao X D, Lindsey D A, Lai Z P, et al. Contingency table analysis of pebble lithology and roundness: A case study of Huangshui River, China and comparison to rivers in the Rocky Mountains, USA[J]. Sedimentary Geology, 2010, 224(1/2/3/4): 49-53.
[35] 黄云飞,张昌民,朱锐,等. 准噶尔盆地玛湖凹陷晚二叠世至中三叠世古气候、物源及构造背景[J]. 地球科学,2017,42(10):1736-1749.

Huang Yunfei, Zhang Changmin, Zhu Rui, et al. Palaeoclimatology, provenance and tectonic setting during Late Permian to Middle Triassic in Mahu Sag, Junggar Basin, China[J]. Earth Science, 2017, 42(10): 1736-1749.
[36] 张昌民,朱锐,赵康,等. 从端点走向连续:河流沉积模式研究进展述评[J]. 沉积学报,2017,35(5):926-944.

Zhang Changmin, Zhu Rui, Zhao Kang, et al. From end member to continuum: Review of fluvial facies model research[J].Acta Sedimentologica Sinica, 2017, 35(5): 926-944.
[37] Chen L Q, Guo F S, Tang C. Evolution of the Late Cretaceous Yongfeng-Chongren Basin in Jiangxi province, Southeast China: Insights from sedimentary facies analysis and pebble counting[J]. Journal of Mountain Science, 2016, 13(2): 342-351.
[38] 周秉根,李典友. 黄山不同类型砾石特性及成因分析[J]. 安徽师范大学学报(自然科学版),2000,28(1):57-60.

Zhou Binggen, Li Dianyou. An analysis on the characteristics and formation of the different gravels in mountain Huangshan[J]. Journal of Anhui Normal University (Natural Science), 2000, 28(1): 57-60.
[39] 赵希涛,张永双,胡道功,等. 云南丽江地区大具盆地早更新世金沙江砾石层的发现及其意义[J]. 地质通报,2006,25(12):1381-1386.

Zhao Xitao, Zhang Yongshuang, Hu Daogong, et al. Discovery of Early Pleistocene gravels of the Jinsha River in the Daju Basin, Yunnan, China, and its significance[J]. Geological Bulletin of China, 2006, 25(12): 1381-1386.
[40] Zolnikov I D, Deev E V, Nazarov D V, et al. Comparative analysis of megaflood deposits and alluvium of the Chuya and Katun' river valleys (Gorny Altai)[J]. Russian Geology and Geophysics, 2015, 56(8): 1162-1172.
[41] 高云建,陈宁生,田树峰,等. 基于堆积物石块磨圆度的泥石流暴发频率判识[J]. 水土保持研究,2018,25(4):370-374.

Gao Yunjian, Chen Ningsheng, Tian Shufeng, et al. Frequency identification of debris flow outbreak based on roundness of debris flow cumulative stones[J]. Research of Soil and Water Conservation, 2018, 25(4): 370-374.
[42] 张昌民,朱锐,郭旭光,等. 干旱地区河流扇三角洲—河流扇演替模式:来自黄羊泉扇的启示[J]. 地球科学,2019,45(5):1791-1806.

Zhang Changmin,Zhu Rui, Guo Xuguang, et al. Arid fluvial fan delta-fluvial fan transition:Implications of Huangyangquan fan area[J]. Earth Science, 2019, 45(5):1791-1806.