[1] Shanmugam G, Moiola R J. Submarine fan models: Problems and solutions[M]//Bouma A H, Normark W R, Barnes N E. Submarine fans and related turbidite systems. New York, NY: Springer, 1985: 29-35.
[2] Richards M, Bowman M, Reading H. Submarine-fan systems i: Characterization and stratigraphic prediction[J]. Marine and Petroleum Geology, 1998, 15(7): 689-717.
[3] Hessler A M, Fildani A. Deep-sea fans: Tapping into Earth's changing landscapes[J]. Journal of Sedimentary Research, 2019, 89(11): 1171-1179.
[4] Hage S, Galy V V, Cartigny M J B, et al. Efficient preservation of young terrestrial organic carbon in sandy turbidity-current deposits[J]. Geology, 2020, 48(9): 882-887.
[5] Hsü K J. Studies of Ventura Field, California, I: Facies geometry and genesis of Lower Pliocene turbidites[J]. AAPG Bulletin, 1977, 61(2): 137-168.
[6] Hsu K J. Studies of Ventura field, California, II: Lithology, compaction, and permeability of sands[J]. AAPG Bulletin, 1977, 61(2): 169-191.
[7] Piper D J W, Normark W R. Sandy fans-from Amazon to Hueneme and beyond[J]. AAPG Bulletin, 2001, 85(8): 1407-1438.
[8] 于兴河,付超,华柑霖,等. 未来接替能源:天然气水合物面临的挑战与前景[J]. 古地理学报,2019,21(1):107-126.

Yu Xinghe, Fu Chao, Hua Ganlin, et al. Future alternative energy: Challenges and prospects of natural gas hydrate[J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(1): 107-126.
[9] Portnov A, Cook A E, Sawyer D E, et al. Clustered BSRs: Evidence for gas hydrate-bearing turbidite complexes in folded regions, example from the Perdido Fold Belt, northern Gulf of Mexico[J]. Earth and Planetary Science Letters, 2019, 528: 115843.
[10] Mutti E, Ricci Lucchi F. Le torbiditi dell’Appennino settentrionale: Introduzione all’analisi di facies[J]. Memorie Della Societa Geologica Italiana, 1972, 11: 161-199.
[11] Walker R G. Deep-water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps: REPLY[J]. AAPG Bulletin, 1978, 63(5): 811.
[12] Normark W R. Fan valleys, channels, and depositional lobes on modern submarine fans: Characters for recognition of sandy turbidite environments[J]. AAPG Bulletin, 1978, 62(6): 912-931.
[13] Walker R G. Turbidites and submarine fans[M]//Walker R G, James N P. Facies models: Response to sea level change. St. John's: Geological Association of Canada, 1992: 239-263.
[14] Shanmugam G. Submarine fans: A critical retrospective (1950-2015)[J]. Journal of Palaeogeography (English Edition), 2016, 5(2): 110-184.
[15] Stow D A V. Fine-grained sediments in deep water: An overview of processes and facies models[J]. Geo-Marine Letters, 1985, 5(1): 17-23.
[16] Mutti E. Turbidite systems and their relations to depositional sequences[M]//Zuffa G G. Provenance of arenites. Dordrecht: Springer, 1985: 65-93.
[17] Bouma A H. Fine-grained submarine fans as possible recorders of long- and short-term climatic changes[J]. Global and Planetary Change, 2001, 28(1/2/3/4): 85-91.
[18] Reading H G, Richards M. Turbidite systems in deep-water Basin margins classified by grain size and feeder system[J]. AAPG Bulletin, 1994, 78(5): 792-822.
[19] SEPM Strata. Deepwater source and settings[EB/OL]. http://www.sepmstrata.org/page.aspx?pageid=40, 2013-02-24.
[20] Kane I A, Clare M A. Dispersion, accumulation, and the ultimate fate of microplastics in deep-marine environments: A review and future directions[J]. Frontiers in Earth Science, 2019, 7: 80.
[21] Nakajima T, Kakuwa Y, Yasudomi Y, et al. Formation of pockmarks and submarine canyons associated with dissociation of gas hydrates on the Joetsu Knoll, eastern margin of the Sea of Japan[J]. Journal of Asian Earth Sciences, 2014, 90: 228-242.
[22] Mountjoy J J, Howarth J D, Orpin A R, et al. Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins[J]. Science Advances, 2018, 4(3): eaar3748.
[23] Bailey L P, Clare M A, Rosenberger K J, et al. Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers[J]. Earth and Planetary Science Letters, 2021, 562: 116845.
[24] Talling P J. On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings[J]. Marine Geology, 2014, 352: 155-182.
[25] Mulder T, Alexander J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48(2): 269-299.
[26] Wynn R B, Masson D G. Canary Islands landslides and tsunami generation: Can we use turbidite deposits to interpret landslide processes?[M]//Locat J, Mienert J, Boisvert L. Submarine mass movements and their consequences: 1st international symposium. Dordrecht: Springer, 2003: 325-332.
[27] Mulder T, Syvitski J P M, Migeon S, et al. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 861-882.
[28] Parsons J D, Bush J W M, Syvitski J P M. Hyperpycnal plume Formation from riverine outflows with small sediment concentrations[J]. Sedimentology, 2001, 48(2): 465-478.
[29] 冯轩,吴永华,杨宝菊,等. 冲绳海槽西南端1.3ka以来异重流沉积记录及其古气候响应[J]. 沉积学报,2021,39(3):739-750.

Feng Xuan, Wu Yonghua, Yang Baoju, et al. Records of hyperpycnal flow deposits in the southwestern Okinawa trough and their paleoclimatic response since 1.3 ka[J]. Acta Sedimentologica Sinica, 2021, 39(3): 739-750.
[30] 杨田,操应长,王艳忠,等. 异重流沉积动力学过程及沉积特征[J]. 地质论评,2015,61(1):23-33.

Yang Tian, Cao Yingchang, Wang Yanzhong, et al. Sediment dynamics process and sedimentary characteristics of hyperpycnal flows[J]. Geological Review, 2015, 61(1): 23-33.
[31] 谈明轩,朱筱敏,朱世发. 异重流沉积过程和沉积特征研究[J]. 高校地质学报,2015,21(1):94-104.

Tan Mingxuan, Zhu Xiaomin, Zhu Shifa. Research on sedimentary process and characteristics of hyperpycnal flows[J]. Geological Journal of China Universities, 2015, 21(1): 94-104.
[32] Katz T, Ginat H, Eyal G, et al. Desert flash floods form hyperpycnal flows in the coral-rich Gulf of Aqaba, Red Sea[J]. Earth and Planetary Science Letters, 2015, 417: 87-98.
[33] Pierdomenico M, Casalbore D, Chiocci F L. Massive benthic litter funnelled to deep sea by flash-flood generated hyperpycnal flows[J]. Scientific Reports, 2019, 9(1): 5330.
[34] Covault J A, Normark W R, Romans B W, et al. Highstand fans in the California borderland: The overlooked deep-water depositional systems[J]. Geology, 2007, 35(9): 783-786.
[35] Covault J A, Graham S A. Submarine fans at all sea-level stands: Tectono-morphologic and climatic controls on terrigenous sediment delivery to the deep sea[J]. Geology, 2010, 38(10): 939-942.
[36] Normandeau A, Lajeunesse P, St-Onge G, et al. Morphodynamics in sediment-starved inner-shelf submarine canyons (Lower St. Lawrence Estuary, eastern Canada)[J]. Marine Geology, 2014, 357: 243-255.
[37] Bernhardt A, Hebbeln D, Regenberg M, et al. Shelfal sediment transport by an undercurrent forces turbidity-current activity during high sea level along the Chile continental margin[J]. Geology, 2016, 44(4): 295-298.
[38] 赵月霞,刘保华,李西双,等. 东海陆坡海底峡谷—扇体系沉积特征及物质搬运[J]. 古地理学报,2011,13(1):119-126.

Zhao Yuexia, Liu Baohua, Li Xishuang, et al. Sedimentary characters and material transportation of submarine canyon-fan systems in slope of the East China Sea[J]. Journal of Palaeogeography, 2011, 13(1): 119-126.
[39] 路月. 东海陆架—冲绳海槽不同沉积单元表层沉积物组成特征及环境指示意义[D]. 北京:中国地质大学(北京),2019.

Lu Yue. Surface sediment composition and environmental indication significance of different sedimentary units in the East China Sea shelf-Okinawa Trough[D]. Beijing: China University of Geosciences (Beijing), 2019.
[40] 李巍然,杨作升,王琦,等. 冲绳海槽陆源碎屑峡谷通道搬运与海底扇沉积[J]. 海洋与湖沼,2001,32(4):371-380.

Li Weiran, Yang Zuosheng, Wang Qi, et al. Terrigenous transportation through canyon and sedimentation of submarine fan in the Okinawa Trough[J]. Oceanologia et Limnologia Sinica, 2001, 32(4): 371-380.
[41] Zhang Y W, Liu Z F, Zhao Y L, et al. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea[J]. Geology, 2018, 46(8): 675-678.
[42] 王长盛,朱俊江,赵冬冬,等. 全球海底峡谷成因及演化研究[J]. 海洋地质前沿,2021,37(3):1-15.

Wang Changsheng, Zhu Junjiang, Zhao Dongdong, et al. Origin and evolution of submarine canyons[J]. Marine Geology Frontiers, 2021, 37(3): 1-15.
[43] Kao S J, Dai M, Selvaraj K, et al. Cyclone-driven deep sea injection of freshwater and heat by hyperpycnal flow in the subtropics[J]. Geophysical Research Letters, 2010, 37(21): L21702.
[44] Hsiung K H, Yu H S, Chiang C S. The modern Kaoping transient fan offshore SW Taiwan: Morphotectonics and development[J]. Geomorphology, 2018, 300: 151-163.
[45] Liu J T, Hsu R T, Hung J J, et al. From the highest to the deepest: The Gaoping River-Gaoping Submarine Canyon dispersal system[J]. Earth-Science Reviews, 2016, 153: 274-300.
[46] Su C C, Hsu S T, Hsu H H, et al. Sedimentological characteristics and seafloor failure offshore SW Taiwan[J]. TAO: Terrestrial, Atmospheric, and Oceanic Sciences, 2018, 29(1): 65-76.
[47] 陈彦庭. 2006年屏东地震引发沉积物之跨峡谷传输地震记录[D]. 台北,中国:国立台湾大学,2017.

Chen Yenting. 2006 Pingtung earthquake doublet induced sediment cross-canyon movement off southwestern Taiwan[D]. National Taiwan University, 2017.
[48] 徐圣婷. 台湾西南海域现代沉积物之传输途径与机制[D]. 台北,中国: 国立台湾大学,2015.

Hsu Shengting. Modern sediment dispersal paths and mechanisms off southwestern Taiwan[D]. Taipei, China: National Taiwan University, 2015.
[49] 郑屹雅. 台湾西南海域沉积物重力流引发海底电缆断裂事件[D]. 国立台湾大学,2012.

Cheng Yiya. Sediment gravity flow induced submarine cable failures off southwestern Taiwan[D]. Taipei, China: National Taiwan University, 2012.
[50] 苏志轩. 台湾西南海域高屏峡谷下游段之沉积物分布与峡谷演进[D]. 台北,中国:国立台湾大学,2014.

Su Alex Chih-Hsuan. Sediment distribution and canyon evolution of the Lower Section Kaoping Submarine Canyon, Offshore South West Taiwan[D]. Taipei, China: National Taiwan University, 2014.
[51] Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003.
[52] Kane I A, Ponten A S M. Submarine transitional flow deposits in the Paleogene Gulf of Mexico[J]. Geology, 2012, 40(12): 1119-1122.
[53] Soutter E L, Kane I A, Fuhrmann A, et al. The stratigraphic evolution of onlap in siliciclastic deep-water systems: Autogenic modulation of allogenic signals[J]. Journal of Sedimentary Research, 2019, 89(10): 890-917.
[54] Fonnesu M, Felletti F, Haughton P D W, et al. Hybrid event bed character and distribution linked to turbidite system sub‐environments: The North Apennine Gottero Sandstone (north‐west Italy)[J]. Sedimentology, 2018, 65(1): 151-190.
[55] Talling P J. Hybrid submarine flows comprising turbidity current and cohesive debris flow: Deposits, theoretical and experimental analyses, and generalized models[J]. Geosphere, 2013, 9(3): 460-488.
[56] Spychala Y T, Hodgson D M, Prelat A, et al. 2017. Frontal and lateral submarine lobe fringes: Comparing sedimentary facies, architecture and flow processes[J]. Journal of Sedimentary Research, 87(1): 75-96.
[57] Patacci M, Haughton P D W, McCaffrey W D. Rheological complexity in sediment gravity flows forced to decelerate against a confining slope, Braux, SE France[J]. Journal of Sedimentary Research, 2014, 84(4): 270-277.
[58] Bell D, Soutter E L, Cumberpatch Z A, et al. Flow-process controls on grain type distribution in an experimental turbidity current deposit: Implications for detrital signal preservation and microplastic distribution in submarine fans[J]. The Depositional Record, 2021, 7(3): 392-415.
[59] Hansen L A S, Hodgson D M, Pontén A, et al. Quantification of Basin-floor fan pinchouts: Examples from the Karoo Basin, South Africa[J]. Frontiers in Earth Science, 2019, 7: 12.
[60] Piper D J W, Slatt R M. Late Quaternary clay-mineral distribution on the eastern continental margin of Canada[J]. GSA Bulletin, 1977, 88(2): 267-272.
[61] Shanmugam G. Deep-water processes and facies models: Implications for sandstone petroleum reservoirs[M]. Oxford: Elsevier, 2006: 19-50.
[62] McHargue T R, Hodgson D M, Shelef E. Architectural diversity of submarine lobate deposits[J]. Frontiers in Earth Science, 2021, 9: 697170.
[63] Twichell D C, Schwab W C, Nelson C H, et al. Characteristics of a sandy depositional lobe on the outer Mississippi fan from SeaMARC IA sidescan sonar images[J]. Geology, 1992, 20(8): 689-692.
[64] Nelson C H, Maldonado A, Coumes F, et al. Ebro fan, Mediterranean[M]//Bouma A H, Normark W R, Barnes N E. Submarine fans and related turbidite systems. New York: Springer, 1985: 121-127.
[65] Talling P J, Wynn R B, Schmmidt D N, et al. How did thin submarine debris flows carry boulder-sized intraclasts for remarkable distances across low gradients to the far reaches of the Mississippi Fan?[J]. Journal of Sedimentary Research, 2010, 80(10): 829-851.
[66] Sohn Y K. 2000. Depositional processes of submarine debris flows in the Miocene fan deltas, Pohang Basin, SE Korea with special reference to flow transformation[J]. Journal of Sedimentary Research, 2000, 70(3): 491-503.
[67] Marr J G, Harff P A, Shanmugam G, et al. Experiments on subaqueous sandy gravity flows: The role of clay and water content in flow dynamics and depositional structures[J]. GSA Bulletin, 2001, 113(11): 1377-1386.
[68] Migeon S, Ducassou E, Le Gonidec Y, et al. Lobe construction and sand/mud segregation by turbidity currents and debris flows on the western Nile deep-sea fan (eastern Mediterranean)[J]. Sedimentary Geology, 2010, 229(3): 124-143.
[69] Ducassou E, Migeon S, Mulder T, et al. 2009. Evolution of the Nile deep‐sea turbidite system during the Late Quaternary: Influence of climate change on fan sedimentation[J]. Sedimentology, 2009, 56(7): 2061-2090.
[70] Ducassou E, Migeon S, Capotondi L, et al. Run-out distance and erosion of debris-flows in the Nile deep-sea fan system: Evidence from lithofacies and micropalaeontological analyses[J]. Marine and Petroleum Geology, 2013, 39(1): 102-123.
[71] Fuhrmann A, Kane I A, Clare M A, et al. Hybrid turbidite-drift channel complexes: An integrated multiscale model[J]. Geology, 2020, 48(6): 562-568.
[72] Faugères J C, Imbert P, Mézerais M L . et al. Seismic patterns of a muddy contourite fan (Vema Channel, South Brazilian Basin) and a sandy distal turbidite deep-sea fan (Cap Ferret system, Bay of Biscay): A comparison[J]. Sedimentary Geology, 1998, 115(1/2/3/4): 81-110.
[73] Fonnesu M, Palermo D, Galbiati M, et al. A new world-class deep-water play-type, deposited by the syndepositional interaction of turbidity flows and bottom currents: The giant Eocene Coral Field in northern Mozambique[J]. Marine and Petroleum Geology, 2020, 111: 179-201.
[74] Miramontes E, Thiéblemont A, Babonneau N, et al. Contourite and mixed turbidite-contourite systems in the Mozambique Channel (SW Indian Ocean): Link between geometry, sediment characteristics and modelled bottom currents[J]. Marine Geology, 2021, 437: 106502.
[75] Romans B W, Castelltort S, Covault J A, et al. Environmental signal propagation in sedimentary systems across timescales[J]. Earth-Science Reviews, 2016, 153: 7-29.
[76] 龚承林,齐昆,徐杰,等. 深水源—汇系统对多尺度气候变化的过程响应与反馈机制[J]. 沉积学报,2021,39(1):231-252.

Gong Chenglin, Qi Kun, Xu Jie, et al. Process-product linkages and feedback mechanisms of deepwater source-to-sink responses to multi-scale climate changes[J]. Acta Sedimentologica Sinica, 2021, 39(1): 231-252.
[77] Ferguson R, Kane I A, Eggenhuisen J, et al. Entangled external and internal controls on submarine fan evolution: An experimental perspective[J]. The Depositional Record, 2020, 6(3): 605-624.
[78] Li Y T, Clift P D, O’Sullivan P. Millennial and centennial variations in zircon U-Pb ages in the Quaternary Indus submarine canyon[J]. Basin Research, 2019, 31(1): 155-170.
[79] Li Y, Clift P D, Boning P, et al. Continuous Holocene input of river sediment to the Indus Submarine Canyon[J]. Marine Geology, 2018, 406: 159-176.
[80] Garzanti E, Bayon G, Dennielou B, et al. The Congo deep-sea fan: Mineralogical, REE, and Nd-isotope variability in quartzose passive-margin sand[J]. Journal of Sedimentary Research, 2021, 91(5): 433-450.
[81] Hsieh Y H, Liu C S, Suppe J, et al. The chimei submarine canyon and fan: A record of Taiwan arc‐continent collision on the rapidly deforming overriding plate[J]. Tectonics, 2020, 39(11): e2020TC006148.
[82] 胡修棉,安慰, Garzanti E,等. 碰撞造山带海沟盆地的识别:以雅鲁藏布缝合带为例[J]. 中国科学(D辑):地球科学,2020,50(12):1893-1905.

Hu Xiumian, An Wei, Garzanti E, et al. Recognition of trench basins in collisional orogens: Insights from the Yarlung Zangbo suture zone in southern Tibet[J]. Science China(Seri.D): Earth Sciences, 2020, 50(12): 1893-1905.
[83] Curray J R, Emmel F J, Moore D G. The Bengal Fan: Morphology, geometry, stratigraphy, history and processes[J]. Marine and Petroleum Geology, 2002, 19(10): 1191-1223.
[84] Curray J R. The Bengal depositional system: From rift to orogeny[J]. Marine Geology, 2014, 352: 59-69.
[85] Pouderoux H, Proust J N, Lamarche G. Submarine paleoseismology of the northern Hikurangi subduction margin of New Zealand as deduced from Turbidite record since 16 ka[J]. Quaternary Science Reviews, 2014, 84: 116-131.
[86] Atwater B F, Carson B, Griggs G B, et al. Rethinking turbidite paleoseismology along the Cascadia subduction zone[J]. Geology, 2014, 42(9): 827-830.
[87] Zavala C, Arcuri M. Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics[J]. Sedimentary Geology, 2016, 337: 36-54.
[88] 刘宝珺,杨仁超,魏久传,等. 地球历史新阶段:人类世[J]. 山东科技大学学报(自然科学版),2018,37(1):1-9.

Liu Baojun, Yang Renchao, Wei Jiuchuan, et al. A new phase of earth history: Anthropocene[J]. Journal of Shandong University of Science and Technology (Natural Science), 2018, 37(1): 1-9.
[89] Harris P T. The fate of microplastic in marine sedimentary environments: A review and synthesis[J]. Marine Pollution Bulletin, 2020, 158: 111398.
[90] Kane I A, Clare M A, Miramontes E, et al. Seafloor microplastic hotspots controlled by deep-sea circulation[J]. Science, 2020, 368(6495): 1140-1145.
[91] Zhong G F, Peng X T. Transport and accumulation of plastic litter in submarine canyons—The role of gravity flows[J]. Geology, 2021, 49(5): 581-586.
[92] Leithold E L, Blair N E, Wegmann K W. Source-to-sink sedimentary systems and global carbon burial: A river runs through it[J]. Earth-Science Reviews, 2016, 153: 30-42.
[93] Rabouille C, Dennielou B, Baudin F, et al. Carbon and silica megasink in deep-sea sediments of the Congo terminal lobes[J]. Quaternary Science Reviews, 2019, 222: 105854.
[94] Weijers J W H, Schouten S, Schefuß E, et al. Disentangling marine, soil and plant organic carbon contributions to continental margin sediments: A multi-proxy approach in a 20,000 year sediment record from the Congo deep-sea fan[J]. Geochimica et Cosmochimica Acta, 2009, 73(1): 119-132.
[95] Lin B Z, Liu Z F, Eglinton T I, et al. Island-wide variation in provenance of riverine sedimentary organic carbon: A case study from Taiwan[J]. Earth and Planetary Science Letters, 2020, 539: 116238.