[1] Walsh J J. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen[J]. Nature, 1991, 350(6313): 53-55.
[2] Allison M A, Bianchi T S, McKee B A, et al. Carbon burial on river-dominated continental shelves: Impact of historical changes in sediment loading adjacent to the Mississippi River[J]. Geophysical Research Letters, 2007, 34(1): L01606.
[3] Berner R A. Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance[J]. American Journal of Science, 1982, 282(4): 451-473.
[4] Hu L M, Shi X F, Bai Y Z, et al. Recent organic carbon sequestration in the shelf sediments of the Bohai Sea and Yellow Sea, China[J]. Journal of Marine Systems, 2016, 155: 50-58.
[5] Yao P, Yu Z G, Bianchi T S, et al. A multiproxy analysis of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf[J]. Journal of Geophysical Research, 2015, 120(7): 1407-1429.
[6] 赵彬,姚鹏,潘慧慧,等. 长江口表层沉积物中有机碳的来源、分布与成岩状态[J]. 中国海洋大学学报(自然科学版),2015,45(11):49-62.

Zhao Bin, Yao Peng, Pan Huihui, et al. Sources, distribution and diagenetic state of sedimentary organic carbon in the Changjiang Estuary[J]. Periodical of Ocean University of China, 2015, 45(11): 49-62.
[7] Sun X S, Fan D J, Liu M, et al. The fate of organic carbon burial in the river-dominated East China Sea: Evidence from sediment geochemical records of the last 70 years[J]. Organic Geochemistry, 2020, 143: 103999.
[8] Bauer J E, Cai W J, Raymond P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7478): 61-70.
[9] Sun X S, Fan D J, Liao H J, et al. Fate of organic carbon burial in modern sediment within Yangtze River Estuary[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(2): e2019JG005379.
[10] Gordon E S, Goñi M A. Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 2003, 67(13): 2359-2375.
[11] 叶翔,陈坚,王爱军,等. 台湾海峡西部沉积物中碳的来源及埋藏[J]. 海洋学报,2011,33(5):73-82.

Ye Xiang, Chen Jian, Wang Aijun, et al. Sources, burial fluxes of Carbon in sediments of the western Taiwan Strait[J]. Acta Oceanologica Sinica, 2011, 33(5): 73-82.
[12] McKee B A, Aller R C, Allison M A, et al. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: Benthic boundary layer and seabed processes[J]. Continental Shelf Research, 2004, 24(7/8): 899-926.
[13] 姚鹏,于志刚,郭志刚. 大河影响下的边缘海沉积有机碳输运与埋藏及再矿化研究进展[J]. 海洋地质与第四纪地质,2013,33(1):153-160.

Yao Peng, Yu Zhigang, Guo Zhigang. Research progress in transport, burial and remineralization of organic carbon at large river dominated ocean margins[J]. Marine Geology & Quaternary Geology, 2013, 33(1): 153-160.
[14] Emery K O, Wigley R L, Bartlett A S, et al. Freshwater peat on the continental shelf[J]. Science, 1967, 158(3806): 1301-1307.
[15] Lamb A L, Wilson G P, Leng M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth-Science Reviews, 2006, 75(1/2/3/4): 29-57.
[16] Hu B Q, Li J, Zhao J T, et al. Late Holocene elemental and isotopic carbon and nitrogen records from the East China Sea inner shelf: Implications for monsoon and upwelling[J]. Marine Chemistry, 2014, 162: 60-70.
[17] Yang S Y, Tang M, Yim W W S, et al. Burial of organic carbon in Holocene sediments of the Zhujiang (Pearl River) and Changjiang (Yangtze River) estuaries[J]. Marine Chemistry, 2011, 123(1/2/3/4): 1-10.
[18] Blair N E, Aller R C. The fate of terrestrial organic carbon in the marine environment[J]. Annual Review of Marine Science, 2012, 4: 401-423.
[19] Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27(5/6): 213-250.
[20] Benner R, Fogel M L, Sprague E K. Diagenesis of belowground biomass of Spartina alterniflora in salt-marsh sediments[J]. Limnology and Oceanography, 1991, 36(7): 1358-1374.
[21] Valiela I, Teal J M, Allen S D, et al. Decomposition in salt marsh ecosystems: The phases and major factors affecting disappearance of above-ground organic matter[J]. Journal of Experimental Marine Biology and Ecology, 1985, 89(1): 29-54.
[22] White D S, Howes B L. Nitrogen incorporation into decomposing litter of Spartina alterniflora[J]. Limnology and Oceanography, 1994, 39(1): 133-140.
[23] Villinski J C, Hayes J M, Brassell S C, et al. Sedimentary sterols as biogeochemical indicators in the Southern Ocean[J]. Organic Geochemistry, 2008, 39(5): 567-588.
[24] Benner R, Fogel M L, Sprague E K, et al. Depletion of 13C in lignin and its implications for stable carbon isotope studies[J]. Nature, 1987, 329(6141): 708-710.
[25] Rice D L, Hanson R B. A kinetic model for detritus nitrogen: Role of the associated bacteria in nitrogen accumulation[J]. Bulletin of Marine Science, 1984, 35(3): 326-340.
[26] Bi L, Yang S Y, Li C, et al. Geochemistry of river-borne clays entering the East China Sea indicates two contrasting types of weathering and sediment transport processes[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 3034-3052.
[27] Milliman DJ, Xie Q C, Yang Z S. Transfer of particulate organic carbon and nitrogen from the Yangtze River to the ocean[J]. American Journal of Science, 1984, 284(7): 824-834.
[28] Yao P, Zhao B, Bianchi TS, et al. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: Implications for carbon preservation and authigenic mineral formation[J]. Continental Shelf Research, 2014, 91: 1-11.
[29] Hu L M, Shi X F, Yu Z G, et al. Distribution of sedimentary organic matter in estuarine–inner shelf regions of the East China Sea: Implications for hydrodynamic forces and anthropogenic impact[J]. Marine Chemistry, 2012, 142-144: 29-40.
[30] 赵美训,丁杨,于蒙. 中国边缘海沉积有机质来源及其碳汇意义[J]. 中国海洋大学学报,2017,47(9):70-76.

Zhao Meixun, Yu Yang, Yu Meng. Sources of sedimentary organic matter in China marginal sea surface sediments and implications of carbon sink[J]. Periodical of Ocean University of China, 2017, 47(9): 70-76.
[31] Xing L, Zhang H L, Yuan Z N, et al. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf[J]. Continental Shelf Research, 2011, 31(10): 1106-1115.
[32] Zhou F X, Gao X L, Yuan H M, et al. The distribution and seasonal variations of sedimentary organic matter in the East China Sea shelf[J]. Marine Pollution Bulletin, 2018, 129(1): 163-171.
[33] 郭志刚,杨作升,张东奇,等. 冬、夏季东海北部悬浮体分布及海流对悬浮体输运的阻隔作用[J]. 海洋学报,2002,24(5):71-80.

Guo Zhigang, Yang Zuosheng, Zhang Dongqi, et al. Seasonal distribution of suspended matter in the northern East China Sea and barrier effect of current circulation on its transport[J]. Acta Oceanologica Sinica, 2002, 24(5): 71-80.
[34] Yuan D L, Qiao F L, Su J. Cross-shelf penetrating fronts off the southeast coast of China observed by MODIS[J]. Geophysical Research Letters, 2005, 32(19): L19603.
[35] Zhang K D, Li A C, Huang P, et al. Sedimentary responses to the cross-shelf transport of terrigenous material on the East China Sea continental shelf[J]. Sedimentary Geology, 2019, 384: 50-59.
[36] Liu S D, Qiao L L, Li G X, et al. Variation in the current shear front and its potential effect on sediment transport over the inner shelf of the East China Sea in winter[J]. Journal of Geophysical Research: Oceans, 2018, 123(11): 8264-8283.
[37] 刘喜停,颜佳新. 铁元素对海相沉积物早期成岩作用的影响[J]. 地球科学进展,2011,26(5):482-492.

Liu Xiting, Yan Jiaxin. Advances in the role of iron in marine sediments during early diagenesis[J]. Advances in Earth Science, 2011, 26(5): 482-492.
[38] 刘健. 磁性矿物还原成岩作用述评[J]. 海洋地质与第四纪地质,2000,20(4):103-107.

Liu Jian. Reductive diagenesis of magnetic minerals: A review[J]. Marine Geology & Quaternary Geology, 2000, 20(4): 103-107.
[39] Zheng Y, Kissel C, Zheng H B, et al. Sedimentation on the inner shelf of the East China Sea: Magnetic properties, diagenesis and paleoclimate implications[J]. Marine Geology, 2010, 268(1/2/3/4): 34-42.
[40] 高抒. 中国东部陆架全新世沉积体系:过程—产物关系研究进展评述[J]. 沉积学报,2013,31(5):845-855.

Gao Shu. Holocene sedimentary systems over the Bohai, Yellow and East China Sea region: Recent progress in the study of process-product relationships[J]. Acta Sedimentologica Sinica, 2013, 31(5): 845-855.
[41] 石学法,刘升发,乔淑卿,等. 东海闽浙沿岸泥质区沉积特征与古环境记录[J]. 海洋地质与第四纪地质,2010,30(4):19-30.

Shi Xuefa, Liu Shengfa, Qiao Shuqing, et al. Depositional features ang palaeoenvironmental records of the mud deposits in Min-Zhe coastal mud area, East China Sea[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 19-30.
[42] 石学法,刘升发,乔淑卿,等. 中国东部近海沉积物地球化学:分布特征、控制因素与古气候记录[J]. 矿物岩石地球化学通报,2015,34(5):885-894.

Shi Xuefa, Liu Shengfa, Qiao Shuqing, et al. Geochemical characteristics, controlling factor and record of paleoclimate in sediments from eastern China seas[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(5): 885-894.
[43] 杨守业,韦刚健,石学法. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J]. 矿物岩石地球化学通报,2015,34(5):902-910.

Yang Shouye, Wei Gangjian, Shi Xuefa. Geochemical approaches of tracing source-to-sink sediment processes and environmental changes at the East Asian continental margin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(5): 902-910.
[44] 杨守业,李超,王中波,等. 现代长江沉积物地球化学组成的不均一性与物源示踪[J]. 第四纪研究,2013,33(4):645-655.

Yang Shouye, Li Chao, Wang Zhongbo, et al. Heterogeneity of geochemical compositions of the Changjiang River sediments and provenance indication[J]. Quaternary Sciences, 2013, 33(4): 645-655.
[45] 戴民汉,翟惟东,鲁中明,等. 中国区域碳循环研究进展与展望[J]. 地球科学进展,2004,19(1):120-130.

Dai Minhan, Zhai Weidong, Lu Zhongming, et al. Regional studies of carbon cycles in China: Progress and perspectives[J]. Advance in Earth Sciences, 2004, 19(1): 120-130.
[46] Wang X C, Sun M Y, Li A C. Contrasting chemical and isotopic compositions of organic matter in Changjiang (Yangtze River) estuarine and East China Sea shelf sediments[J]. Journal of Oceanography, 2008, 64(2): 311-321.
[47] Jiao N Z, Zhang Y, Zeng Y H, et al. Ecological anomalies in the East China Sea: Impacts of the Three Gorges Dam?[J]. Water Research, 2007, 41(6): 1287-1293.
[48] Gong G W, Wen Y H, Wang B W, et al. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(6/7): 1219-1236.
[49] 何中发,杨守业,赵宝成,等. 长江口地区近1500年以来沉积物重金属含量变化及其对流域环境响应[J]. 海洋地质与第四纪地质,2019,39(2):21-30.

He Zhongfa, Yang Shouye, Zhao Baocheng, et al. Changes in heavy metal elements in the sediments from Changjiang Estuary and their environmental responses in recent 1500 years[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 21-30.
[50] Milliman J D, Farnsworth K L. River discharge to the coastal ocean: A global synthesis[M]. Cambridge: Cambridge University Press, 2011: 1-384.
[51] Liu X T, Li A C, Dong J, et al. Nonevaporative origin for gypsum in mud sediments from the East China Sea shelf[J]. Marine Chemistry, 2018, 205: 90-97.
[52] Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3/4): 208-224.
[53] Zhou F, Xue H J, Huang D J, et al. Cross-shelf exchange in the shelf of the East China Sea[J]. Journal of Geophysical Research:Oceans, 2015, 120(3): 1545-1572.
[54] Guan B X, Fang G H. Winter counter-wind currents off the southeastern China coast: A review[J]. Journal of Oceanography, 2006, 62(1): 1-24.
[55] Lian E G, Yang S Y, Wu H, et al. Kuroshio subsurface water feeds the wintertime Taiwan Warm Current on the inner East China Sea shelf[J]. Journal of Geophysical Research, 2016, 121(7): 4790-4803.
[56] Chen CT A. Chemical and physical fronts in the Bohai, Yellow and East China seas[J]. Journal of Marine Systems, 2009, 78(3): 394-410.
[57] Hsueh Y. The Kuroshio in the East China Sea[J]. Journal of Marine Systems, 2000, 24(1/2): 131-139.
[58] 石学法,胡利民,乔淑卿,等. 中国东部陆架海沉积有机碳研究进展:来源、输运与埋藏[J]. 海洋科学进展,2016,34(3):313-327.

Shi Xuefa, Hu Limin, Qiao Shuqing, et al. Progress in research of sedimentary organic carbon in the East China Sea: Sources, dispersal and sequestration[J]. Advances in Marine Science, 2016, 34(3): 313-327.
[59] He D, Ladd S N, Saunders C J, et al. Distribution of n-alkanes and their δ2H and δ13C values in typical plants along a terrestrial-coastal-oceanic gradient[J]. Geochimica et Cosmochimica Acta, 2020, 281: 31-52.
[60] Hu L M, Shi X F, Guo Z G, et al. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: The importance of depositional hydrodynamic forcing[J]. Marine Geology, 2013, 335: 52-63.
[61] 尹红珍,姚鹏,于志刚. 边缘海环境中陆源有机质的化学生物标志物研究进展[J]. 海洋环境科学,2012,31(1):128-135.

Yin Hongzhen, Yao Peng, Yu Zhigang. Study advances in chemical biomarkers of terrestrial organic matter in marine margins environment[J]. Marine Environmental Science, 2012, 31(1): 128-135.
[62] Hopmans E C, Weijers J W H, Schefuß E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224(1/2): 107-116.
[63] Cooke M P, Talbot H M, Farrimond P. Bacterial populations recorded in bacteriohopanepolyol distributions in soils from northern England[J]. Organic Geochemistry, 2008, 39(9): 1347-1358.
[64] Kao S J, Lin F J, Liu K K. Organic carbon and nitrogen contents and their isotopic compositions in surficial sediments from the East China Sea shelf and the southern Okinawa Trough[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(6/7): 1203-1217.
[65] Zhang J, Wu Y, Jennerjahn T C, et al. Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: Implications for source discrimination and sedimentary dynamics[J]. Marine Chemistry, 2007, 106(1/2): 111-126.
[66] Li X X, Bianchi T S, Allison M A, et al. Composition, abundance and age of total organic carbon in surface sediments from the inner shelf of the East China Sea[J]. Marine Chemistry, 2012, 145-147: 37-52.
[67] 张龙军,宫萍,张向上. 河口有机碳研究综述[J]. 中国海洋大学学报,2005,35(5):737-744,842.

Zhang Longjun, Gong Ping, Zhang Xiangshang. A review of the study of estuarine organic carbon[J]. Periodical of Ocean University of China, 2005, 35(5): 737-744, 842.
[68] Gaskell S J, Eglinton G. Rapid hydrogenation of sterols in a contemporary lacustrine sediment[J]. Nature, 1975, 254(5497): 209-211.
[69] Tian R C, Sicre M A, Saliot A. Aspects of the geochemistry of sedimentary sterols in the Chang Jiang Estuary[J]. Organic Geochemistry, 1992, 18(6): 843-850.
[70] Wakeham S G, Canuel E A, Lerberg E J, et al. Partitioning of organic matter in continental margin sediments among density fractions[J]. Marine Chemistry, 2009, 115(3/4): 211-225.
[71] Bianchi T S, Galler J J, Allison M A. Hydrodynamic sorting and transport of terrestrially derived organic carbon in sediments of the Mississippi and Atchafalaya Rivers[J]. Estuarine, Coastal and Shelf Science, 2007, 73(1/2): 211-222.
[72] Mayer L M. Surface area control of organic carbon accumulation in continental shelf sediments[J]. Geochimica et Cosmochimica Acta, 1994, 58(4): 1271-1284.
[73] Ji Y L, Feng L J, Zhang D H, et al. Hydrodynamic sorting controls the transport and hampers source identification of terrigenous organic matter: A case study in East China Sea inner shelf and its implication[J]. Science of the Total Environment, 2020, 706: 135699.
[74] Schmidt F, Hinrichs KU, Sources Elvert M., transport, and partitioning of organic matter at a highly dynamic continental margin[J]. Marine Chemistry, 2010, 118(1/2): 37-55.
[75] Sampere T P, Bianchi T S, Wakeham S G, et al. Sources of organic matter in surface sediments of the Louisiana Continental margin: Effects of major depositional/transport pathways and Hurricane Ivan[J]. Continental Shelf Research, 2008, 28(17): 2472-2487.
[76] Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17/18): 2141-2156.
[77] 李安春,张凯棣. 东海内陆架泥质沉积体研究进展[J]. 海洋与湖沼,2020,51(4):705-727.

Li Anchun, Zhang Kaidi. Research progress of mud wedge in the inner continental shelf of the East China Sea[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 705-727.
[78] Bao R, McIntyre C, Zhao M X, et al. Widespread dispersal and aging of organic carbon in shallow marginal seas[J]. Geology, 2016, 44(10): 791-794.
[79] Dong L X, Guan W B, Chen Q, et al. Sediment transport in the Yellow Sea and East China Sea[J]. Estuarine, Coastal and Shelf Science, 2011, 93(3): 248-258.
[80] Hung JJ, ChenC H, GongG C, et al. Distributions, stoichiometric patterns and cross-shelf exports of dissolved organic matter in the East China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(6/7): 1127-1145.
[81] Liu X.T., Li A.C., Dong J., et al., 2018. Provenance discrimination of sediments in the Zhejiang-Fujian mud belt, East China Sea: Implications for the development of the mud depocenter[J]. Journal of Asian Earth Sciences, 151: 1-15.
[82] He L, Li Y, Zhou H, et al. Variability of cross-shelf penetrating fronts in the East China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(19/20): 1820-1826.
[83] Mei X, Li X X, Wang Z B, et al. Cross shelf transport of terrigenous organic matter in surface sediments from outer shelf to Okinawa Trough in East China Sea[J]. Journal of Marine Systems, 2019, 199: 103224.
[84] Li G, Wang X C, Yang Z F, et al. Dam-triggered organic carbon sequestration makes the Changjiang (Yangtze) river basin (China) a significant carbon sink[J]. Journal of Geophysical Research, 2015, 120(1): 39-53.
[85] 马倩倩,魏星,吴莹,等. 三峡大坝建成后长江河流表层沉积物中有机物组成与分布特征[J]. 中国环境科学,2015,35(8):2485-2493.

Ma Qianqian, Wei Xing, Wu Ying, et al. Composition and distribution of organic matter in the surface sediments of the Changjiang River in Post-Three Gorges Dam period[J]. China Environmental Science, 2015, 35(8): 2485-2493.
[86] Yang Z, Wang H, Saito Y, et al. Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: The past 55 years and after the Three Gorges Dam[J]. Water Resources Research, 2006, 42(4): W04407.
[87] Dai ZJ, Liu J T. Impacts of large dams on downstream fluvial sedimentation: An example of the Three Gorges Dam (TGD) on the Changjiang (Yangtze River)[J]. Journal of Hydrology, 2013, 480: 10-18.
[88] Li D, Yao P, Bianchi T S, et al. Organic carbon cycling in sediments of the Changjiang Estuary and adjacent shelf: Implication for the influence of Three Gorges Dam[J]. Journal of Marine Systems, 2014, 139: 409-419.
[89] Wang C L, Hao Z, Gao J H, et al. Reservoir construction has reduced organic carbon deposition in the East China Sea by half since 2006[J]. Geophysical Research Letters, 2020, 47(17): e2020GL087357.
[90] 高抒,贾建军,杨阳,等. 陆架海岸台风沉积记录及信息提取[J]. 海洋学报,2019,41(10):141-160.

Gao Shu, Jia Jianjun, Yang Yang, et al. Obtaining typhoon information from sedimentary records in coastal-shelf waters[J]. Acta Oceanologica Sinica, 2019, 41(10): 141-160.
[91] 杨照祥,薛成凤,杨阳,等. 百年尺度东海内陆架风暴事件重建:器测记录与沉积记录耦合[J]. 海洋学报,2020,42(7):119-129.

Yang Zhaoxiang, Xue Chengfeng, Yang Yang, et al. A 100-year reconstruction of typhoon events on the inner shelf of the East China Sea: Coupling of meteorological observations and sedimentary records[J]. Acta Oceanologica Sinica, 2020, 42(7): 119-129.
[92] 苗丽敏,杨世伦,朱琴,等. 风暴过程中潮滩悬沙浓度和悬沙输运的变化及其动力机制:以长江三角洲南汇潮滩为例[J]. 海洋学报,2016,38(5):158-167.

Miao Limin, Yang Shilun, Zhu Qin, et al. Variations of suspended sediment concentrations and transport in response to a storm and its dynamic mechanism: A study case of Nanhui tidal flat of the Yangtze River Delta[J]. Acta Oceanologica Sinica, 2016, 38(5): 158-167.
[93] Lu J, Jiang J B, Li A C, et al. Impact of Typhoon Chan-hom on the marine environment and sediment dynamics on the inner shelf of the East China Sea: In-situ seafloor observations[J]. Marine Geology, 2018, 406: 72-83.
[94] 王腾,刘广鹏,赵世烨,等. 台风事件对闽江口上游营养盐和有机碳含量及通量的影响[J]. 应用海洋学学报,2016,35(1):38-46.

Wang Teng, Liu Guangpeng, Zhao Shiye, et al. Influence of two typhoon events on the content and flux of nutrient and organic carbon in the upper Minjiang Estuary[J]. Journal of Applied Oceanography, 2016, 35(1): 38-46.
[95] Smith R W, Bianchi T S, Allison M, et al. High rates of organic carbon burial in fjord sediments globally[J]. Nature Geoscience, 2015, 8(6): 450-453.
[96] 宋金明,曲宝晓,李学刚,等. 黄东海的碳源汇:大气交换、水体溶存与沉积物埋藏[J]. 中国科学(D辑):地球科学,2018,48(11):1444-1455.

Song Jinming, Qu Baoxiao, Li Xuegang, et al. Carbon sinks/sources in the Yellow and East China Seas-Air-sea interface exchange, dissolution in seawater, and burial in sediments[J]. Science China (Seri.D):Earth Sciences, 2018, 48(11): 1444-1455.
[97] Deng B, Zhang J, Wu Y. Recent sediment accumulation and carbon burial in the East China Sea[J]. Global Biogeochemical Cycles, 2006, 20(3): GB3014.
[98] 姚鹏,郭志刚,于志刚. 大河影响下的陆架边缘海沉积有机碳的再矿化作用[J]. 海洋学报,2014,36(2):23-32.

Yao Peng, Guo Zhigang, Yu Zhigang. Remineralization of sedimentary organic carbon in river dominated ocean margins[J]. Acta Oceanologica Sinica, 2014, 36(2): 23-32.
[99] Hedges J I, Keil R G. Sedimentary organic matter preservation: An assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2/3): 81-115.
[100] Bianchi T S. The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(49): 19473-19481.
[101] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展,2019,34(2):202-209.

Zhang Yonghua, Wu Zijun. Sedimentary organic carbon mineralization and its contribution to the marine carbon cycle in the marginal seas[J]. Advances in Earth Science, 2019, 34(2): 202-209.
[102] 刘喜停,李安春,马志鑫,等. 沉积过程对自生黄铁矿硫同位素的约束[J]. 沉积学报,2020,38(1):124-137.

Liu Xiting, Li Anchun, Ma Zhixin, et al. Constraint of sedimentary processes on the sulfur isotope of authigenic pyrite[J]. Acta Sedimentologica Sinica, 2020, 38(1): 124-137.
[103] Froelich P N, Klinkhammer G P, Bender M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43(7): 1075-1090.
[104] Roberts A P, Zhao X, Harrison R J, et al. Signatures of reductive magnetic mineral diagenesis from unmixing of first-order reversal curves[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(6): 4500-4522.
[105] Jørgensen B B, Kasten S. Sulfur cycling and methane oxidation[M]//Schulz H D, Zabel M. Marine Geochemistry. Berlin, Heidelberg: Springer, 2006: 271-309.
[106] Jørgensen B B. Mineralization of organic matter in the sea bed—the role of sulphate reduction[J]. Nature, 1982, 296(5858): 643-645.
[107] 朱茂旭,史晓宁,杨桂朋,等. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展,2011,26(4):355-364.

Zhu Maoxu, Shi Xiaoning, Yang Guipeng, et al. Relative contributions of various early diagenetic pathways to mineralization of organic matter in marine sediments: An overview[J]. Advances in Earth Science, 2011, 26(4): 355-364.
[108] Aller R C, Madrid V, Chistoserdov A, et al. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: Implications for oceanic isotope cycles and the sedimentary record[J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4671-4692.
[109] Riedinger N, Brunner B, Krastel S, et al. Sulfur cycling in an iron oxide-dominated, dynamic marine depositional system: The Argentine continental margin[J]. Frontiers in Earth Science, 2017, 5: 33.
[110] 许昆明,胡融刚. 微电极技术在沉积物化学原位测量中的应用[J]. 地球科学进展,2006,21(8):863-869.

Xu Kunming, Hu Ronggang. Microelectrodes for in situ chemical measurements in sediments[J]. Advances in Earth Science, 2006, 21(8): 863-869.
[111] Sauter E J, Schlüter M, Suess E. Organic carbon flux and remineralization in surface sediments from the northern North Atlantic derived from pore-water oxygen microprofiles[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2001, 48(2): 529-553.
[112] 赵彬,姚鹏,杨作升,等. 大河影响下的边缘海反风化作用[J]. 地球科学进展,2018,33(1):42-51.

Zhao Bin, Yao Peng, Yang Zuosheng, et al. Reverse weathering in river-dominated marginal seas[J]. Advances in Earth Science, 2018, 33(1): 42-51.
[113] Aller R C, Blair N E. Carbon remineralization in the Amazon-Guianas tropical mobile mudbelt: A sedimentary incinerator[J]. Continental Shelf Research, 2006, 26(17/18): 2241-2259.
[114] Kao S J, Horng C S, Roberts A P, et al. Carbon–sulfur–iron relationships in sedimentary rocks from southwestern Taiwan: Influence of geochemical environment on greigite and pyrrhotite formation[J]. Chemical Geology, 2004, 203(1/2): 153-168.
[115] Ge C, Zhang W G, Dong C Y, et al. Magnetic mineral diagenesis in the river-dominated inner shelf of the East China Sea, China[J]. Journal of Geophysical Research Solid Ea, 2015, 120(7): 4720-4733.
[116] Hesse P, Stolz J F, Maher B A, et al. Bacterial magnetite and the quaternary record[M]//Maher B A, Thompson R. Quaternary Climates, Environments and Magnetism. Cambridge: Cambridge University Press, 1999: 163-198.
[117] Zheng Y, Zheng H B, Kissel C, et al. Sedimentation rate control on diagenesis, East China Sea sediments[J]. Physics of the Earth and Planetary Interiors, 2011, 187(3/4): 301-309.
[118] 时小军,余克服,陈特固. 南海周边中全新世以来的海平面变化研究进展[J]. 海洋地质与第四纪地质,2007,27(5):121-132.

Shi Xiaojun, Yu Kefu, Chen Tegu. Progress in researches on sea-level changes in South China Sea since mid-Holocene[J]. Marine Geology & Quaternary Geology, 2007, 27(5): 121-132.
[119] 李悦,王汝建,李文宝. 利用有孔虫氧同位素重建古海平面变化的研究进展[J]. 地球科学进展,2016,31(3):310-319.

Li Yue, Wang Rujian, Li Wenbao. Review on research on paleo-sea level reconstruction based on foraminiferal oxygen isotope in deep sea sediments[J]. Advances in Earth Science, 2016, 31(3): 310-319.
[120] 时小军,余克服,陈特固,等. 中—晚全新世高海平面的琼海珊瑚礁记录[J]. 海洋地质与第四纪地质,2008,28(5):1-9.

Shi Xiaojun, Yu Kefu, Chen Tegu, et al. Mid-to late-Holocene sea level highstands: Evidence from fringing coral reefs at Qionghai, Hainan Island[J]. Marine Geology & Quaternary Geology, 2008, 28(5): 1-9.
[121] 唐国军,陈衍景. 有机碳同位素示踪古环境变化研究[J]. 矿物岩石,2004,24(3):110-115.

Tang Guojun, Chen Yanjing. Comment on tracing environmental change with organic carbon isotopes[J]. Journal of Mineralogy and Petrology, 2004, 24(3): 110-115.
[122] Goslin J, Sansjofre P, van Vliet‐Lanoë B, et al. Carbon stable isotope (δ13C) and elemental (TOC, TN) geochemistry in saltmarsh surface sediments (Western Brittany, France): A useful tool for reconstructing Holocene relative sea-level[J]. Journal of Quaternary Science, 2017, 32(7): 989-1007.
[123] Liu X T, Li A C, Fike D A, et al. Environmental evolution of the East China Sea inner shelf and its constraints on pyrite sulfur contents and isotopes since the last deglaciation[J]. Marine Geology, 2020, 429: 106307.
[124] 蔡德陵,孙耀,张小勇,等. 由东海、黄海沉积物中有机碳含量及稳定同位素组成重建200 a以来初级生产力历史记录[J]. 海洋学报,2014,36(2):40-50.

Cai Deling, Sun Yao, Zhang Xiaoyong, et al. Reconstructing aprimary productivity history over the past 200a using the sediment organic carbon content and the stable isotope composition from the East China Sea and the Yellow Sea[J]. Acta Oceanologica Sinica, 2014, 36(2): 40-50.
[125] Suess E. Particulate organic carbon flux in the oceans—surface productivity and oxygen utilization[J]. Nature, 1980, 288(5788): 260-263.
[126] 梅西,张训华,郑洪波,等. 南海南部50万年以来碳酸钙和有机碳记录及其揭示的东亚夏季风演化[J]. 地球科学:中国地质大学学报,2010,35(1):22-30.

Mei Xi, Zhang Xunhua, Zheng Hongbo, et al. 500000-year records of carbonate and organic carbon from the southern South China Sea and implication for East Asian Summer Monsoon evolution[J]. Earth Science:Journal of China University of Geosciences, 2010, 35(1): 22-30.