[1] Scotese C R, Song H J, Mills B J W, et al. Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years[J]. Earth-Science Reviews, 2021, 215: 103503, doi: 10.1016/j.earscirev.2021.103503 .
[2] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
[3] Westerhold T, Marwan N, Drury A J, et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509): 1383-1387.
[4] Veizer J, Prokoph A. Temperatures and oxygen isotopic composition of Phanerozoic oceans[J]. Earth-Science Reviews, 2015, 146: 92-104.
[5] Finnegan S, Bergmann K, Eiler J M, et al. The magnitude and duration of Late Ordovician–Early Silurian glaciation[J]. Science, 2011, 331(6019): 903-906.
[6] Affek H P. Clumped isotope paleothermometry: Principles, applications, and challenges[J]. The Paleontological Society Papers, 2012, 18: 101-114.
[7] Henkes G A, Passey B H, Grossman E L, et al. Temperature evolution and the oxygen isotope composition of Phanerozoic oceans from carbonate clumped isotope thermometry[J]. Earth and Planetary Science Letters, 2018, 490: 40-50.
[8] Elderfield H, Ganssen G. Past temperature and δ 18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios[J]. Nature, 2000, 405(6785): 442-445.
[9] Jenkyns H C, Forster A, Schouten S, et al. High temperatures in the Late Cretaceous Arctic Ocean[J]. Nature, 2004, 432(7019): 888-892.
[10] Mutterlose J, Malkoc M, Schouten S, et al. TEX86 and stable δ 18O paleothermometry of early Cretaceous sediments: Implications for belemnite ecology and paleotemperature proxy application[J]. Earth and Planetary Science Letters, 2010, 298(3/4): 286-298.
[11] Prahl F G, Mix A C, Sparrow M A. Alkenone paleothermometry: Biological lessons from marine sediment records off western South America[J]. Geochimica et Cosmochimica Acta, 2006, 70(1): 101-117.
[12] Łącka M, Cao M, Rosell-Melé A, et al. Postglacial paleoceanography of the western Barents Sea: Implications for alkenone-based sea surface temperatures and primary productivity[J]. Quaternary Science Reviews, 2019, 224: 105973, doi: 10.1016/j.quascirev.2019.105973 .
[13] Veizer J, Ala D, Azmy K, et al. 87Sr/86Sr, δ 13C and δ 18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161(1/2/3): 59-88.
[14] Prokoph A, Shields G A, Veizer J. Compilation and time-series analysis of a marine carbonate δ 18O, δ 13C, 87Sr/86Sr and δ 34S database through Earth history[J]. Earth-Science Reviews, 2008, 87(3/4): 113-133.
[15] Grossman E L. Oxygen isotope stratigraphy[M]//Gradstein F M, Ogg J G, Schmitz M D, et al. The geological time scale 2012. Amsterdam: Elsevier, 2012: 181-206.
[16] Bennett C E, Williams M, Leng M J, et al. Oxygen isotope analysis of the eyes of pelagic trilobites: Testing the application of sea temperature proxies for the Ordovician[J]. Gondwana Research, 2018, 57: 157-169.
[17] Blake R E, O’Neil J R, Garcia G A. Oxygen isotope systematics of biologically mediated reactions of phosphate: I. Microbial degradation of organophosphorus compounds[J]. Geochimica et Cosmochimica Acta, 1997, 61(20): 4411-4422.
[18] Buggisch W, Joachimski M M, Sevastopulo G, et al. Mississippian δ 13Ccarb and conodont apatite δ 18O records: Their relation to the Late Palaeozoic Glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 268(3/4): 273-292.
[19] Rosenau N A, Herrmann A D, Leslie S A. Conodont apatite δ18O values from a platform margin setting, Oklahoma, USA: Implications for initiation of Late Ordovician icehouse conditions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 315-316: 172-180.
[20] Chen B, Joachimski M M, Sun Y D, et al. Carbon and conodont apatite oxygen isotope records of Guadalupian–Lopingian boundary sections: Climatic or sea-level signal?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 311(3/4): 145-153.
[21] Trotter J A, Williams I S, Nicora A, et al. Long-term cycles of Triassic climate change: A new δ 18O record from conodont apatite[J]. Earth and Planetary Science Letters, 2015, 415: 165-174.
[22] Bergmann K D, Finnegan S, Creel R, et al. A paired apatite and calcite clumped isotope thermometry approach to estimating Cambro-Ordovician seawater temperatures and isotopic composition[J]. Geochimica et Cosmochimica Acta, 2018, 224: 18-41.
[23] Montañez I P, Osleger D J, Chen J T, et al. Carboniferous climate teleconnections archived in coupled bioapatite δ 18OPO4 and 87Sr/86Sr records from the epicontinental Donets Basin, Ukraine[J]. Earth and Planetary Science Letters, 2018, 492: 89-101.
[24] Sun Y D, Joachimski M M, Wignall P B, et al. Lethally hot temperatures during the Early Triassic greenhouse[J]. Science, 2012, 338(6105): 366-370.
[25] Wang W Q, Garbelli C, Zhang F F, et al. A high-resolution Middle to Late Permian paleotemperature curve reconstructed using oxygen isotopes of well-preserved brachiopod shells[J]. Earth and Planetary Science Letters, 2020, 540: 116245, doi: 10.1016/j.epsl.2020.116245 .
[26] Nicoll R S, Metcalfe I, Wang C Y. New species of the conodont Genus Hindeodus and the conodont biostratigraphy of the Permian-Triassic boundary interval[J]. Journal of Asian Earth Sciences, 2002, 20(6): 609-631.
[27] 王志浩,祁玉平. 我国北方石炭—二叠系牙形刺序列再认识[J]. 微体古生物学报,2003,20(3):225-243.

Wang Zhihao, Qi Yuping. Review of Carboniferous-Permian conodont biostratigraphy in North China[J]. Acta Micropalaeontologica Sinica, 2003, 20(3): 225-243.
[28] Kaufmann B. Calibrating the Devonian Time Scale: A synthesis of U-Pb ID-TIMS ages and conodont stratigraphy[J]. Earth-Science Reviews, 2006, 76(3/4): 175-190.
[29] Bergström S M, Ferretti A. Conodonts in Ordovician biostratigraphy[J]. Lethaia, 2017, 50(3): 424-439.
[30] Wenzel B, Lécuyer C, Joachimski M M. Comparing oxygen isotope records of Silurian calcite and phosphate: δ18O compositions of brachiopods and conodonts[J]. Geochimica et Cosmochimica Acta, 2000, 64(11): 1859-1872.
[31] Joachimski M M, Buggisch W. Conodont apatite δ18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction[J]. Geology, 2002, 30(8): 711-714.
[32] Kolodny Y, Luz B, Navon O. Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite: Rechecking the rules of the game[J]. Earth and Planetary Science Letters, 1983, 64(3): 398-404.
[33] Pucéat E, Joachimski M M, Bouilloux A, et al. Revised phosphate-water fractionation equation reassessing paleotemperatures derived from biogenic apatite[J]. Earth and Planetary Science Letters, 2010, 298(1/2): 135-142.
[34] Vennemann T W, Fricke H C, Blake R E, et al. Oxygen isotope analysis of phosphates: A comparison of techniques for analysis of Ag3PO4 [J]. Chemical Geology, 2002, 185(3/4): 321-336.
[35] Trotter J A, Williams I S, Barnes C R, et al. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry[J]. Science, 2008, 321(5888): 550-554.
[36] Wheeley J R, Smith M P, Boomer I. Oxygen isotope variability in conodonts: Implications for reconstructing Palaeozoic palaeoclimates and palaeoceanography[J]. Journal of the Geological Society, 2012, 169(3): 239-250.
[37] Lécuyer C, Amiot R, Touzeau A, et al. Calibration of the phosphate δ 18O thermometer with carbonate-water oxygen isotope fractionation equations[J]. Chemical Geology, 2013, 347: 217-226.
[38] Trotter J A, Eggins S M. Chemical systematics of conodont apatite determined by laser ablation ICPMS[J]. Chemical Geology, 2006, 233(3/4): 196-216.
[39] Trotter J A, Gerald J D F, Kokkonen H, et al. New insights into the ultrastructure, permeability, and integrity of conodont apatite determined by transmission electron microscopy[J]. Lethaia, 2007, 40(2): 97-110.
[40] Chen J, Shen S Z, Li X H, et al. High-resolution SIMS oxygen isotope analysis on conodont apatite from South China and implications for the end-Permian mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 26-38.
[41] Pander C H. Monographie der fossilen fische des silurischen systems der Russisch-Baltischen gouvernements[M]. St. Petersburg: Buchdruckerei Kaiserlichen Akademie des Wissenschaften, 1856: 91.
[42] Pietzner H, Vahl J, Werner H, et al. Zur chemischen zusammensetzung und mikromorphologie der conodonten[J]. Palaeontographica Abteilung A, 1968, 128(4/5/6): 115-152.
[43] Wright J. Conodont apatite: Structure and geochemistry[J]. Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, 1990, 1: 445-459.
[44] Donoghue P C, Forey P L, Aldridge R J. Conodont affinity and chordate phylogeny[J]. Biological Reviews, 2000, 75(2): 191-251.
[45] Sweet W C, Donoghue P C J. Conodonts: Past, present, future[J]. Journal of Paleontology, 2001, 75(6): 1174-1184.
[46] Blieck A, Turner S, Burrow C J, et al. Fossils, histology, and phylogeny: Why conodonts are not vertebrates[J]. Episodes, 2010, 33(4): 234-241.
[47] Murdock D J E, Dong X P, Repetski J E, et al. The origin of conodonts and of vertebrate mineralized skeletons[J]. Nature, 2013, 502(7472): 546-549.
[48] Balter V, Martin J E, Tacail T, et al. Calcium stable isotopes place Devonian conodonts as first level consumers[J]. Geochemical Perspectives Letters, 2019, 10: 36-39.
[49] Fan J X, Shen S Z, Erwin D H, et al. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity[J]. Science, 2020, 367(6475): 272-277.
[50] Sharp Z D, Atudorei V, Furrer H. The effect of diagenesis on oxygen isotope ratios of biogenic phosphates[J]. American Journal of Science, 2000, 300(3): 222-237.
[51] Lecuyer C, Grandjean P, Sheppard S M F. Oxygen isotope exchange between dissolved phosphate and water at temperatures ≤135°C: Inorganic versus biological fractionations[J]. Geochimica et Cosmochimica Acta, 1999, 63(6): 855-862.
[52] LeGeros R Z. Apatites in biological systems[J]. Progress in Crystal Growth and Characterization, 1981, 4(1/2): 1-45.
[53] Hughes J M, Rakovan J. The crystal structure of apatite, Ca5(PO4)3(F, OH, Cl)[J]. Reviews in Mineralogy and Geochemistry, 2002, 48(1): 1-12.
[54] Kemp A. Amino acid residues in conodont elements[J]. Journal of Paleontology, 2002, 76(3): 518-528.
[55] Žigaitė Ž, Qvarnström M, Bancroft A, et al. Trace and rare earth element compositions of Silurian conodonts from the Vesiku Bone Bed: Histological and palaeoenvironmental implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 549: 109449, doi: 10.1016/j.palaeo.2019.109449 .
[56] Longinelli A, Nuti S. Revised phosphate-water isotopic temperature scale[J]. Earth and Planetary Science Letters, 1973, 19(3): 373-376.
[57] Urey H C, Lowenstam H A, Epstein S, et al. Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States[J]. Geological Society of America Bulletin, 1951, 62(4): 399-416.
[58] Chen B, Joachimski M M, Shen S Z, et al. Permian ice volume and palaeoclimate history: Oxygen isotope proxies revisited[J]. Gondwana Research, 2013, 24(1): 77-89.
[59] Joachimski M M, von Bitter P H, Buggisch W. Constraints on Pennsylvanian glacioeustatic sea-level changes using oxygen isotopes of conodont apatite[J]. Geology, 2006, 34(4): 277-280.
[60] Joachimski M M, Breisig S, Buggisch W, et al. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite[J]. Earth and Planetary Science Letters, 2009, 284(3/4): 599-609.
[61] Tudge A P. A method of analysis of oxygen isotopes in orthophosphate: Its use in the measurement of paleotemperatures[J]. Geochimica et Cosmochimica Acta, 1960, 18(1/2): 81-93.
[62] Crowson R A, Showers W J, Wright E K, et al. Preparation of phosphate samples for oxygen isotope analysis[J]. Analytical Chemistry, 1991, 63(20): 2397-2400.
[63] Stuart-Williams H L Q, Schwarcz H P. Oxygen isotopic analysis of silver orthophosphate using a reaction with bromine[J]. Geochimica et Cosmochimica Acta, 1995, 59(18): 3837-3841.
[64] Holmden C, Papanastassiou D A, Wasserburg G J. Negative thermal ion mass spectrometry of oxygen in phosphates[J]. Geochimica et Cosmochimica Acta, 1997, 61(11): 2253-2263.
[65] O’Neil J R, Roe L J, Reinhard E, et al. A rapid and precise method of oxygen isotope analysis of biogenic phosphate[J]. Israel Journal of Earth Sciences, 1994, 43(3): 203-212.
[66] Laporte D F, Holmden C, Patterson W P, et al. Oxygen isotope analysis of phosphate: Improved precision using TC/EA CF‐IRMS[J]. Journal of Mass Spectrometry, 2009, 44(6): 879-890.
[67] Grimes V, Pellegrini M. A comparison of pretreatment methods for the analysis of phosphate oxygen isotope ratios in bioapatite[J]. Rapid Communications in Mass Spectrometry, 2013, 27(3): 375-390.
[68] Griffin J M, Montañez I P, Matthews J A, et al. A refined protocol for δ 18OPO 4 analysis of conodont bioapatite[J]. Chemical Geology, 2015, 417: 11-20.
[69] Cid-Andres A P. A review on useful concepts for stable isotope of oxygen in phosphate (δ 18Op) extraction, purification and analysis of freshwater samples and other potential phosphate sources[J]. Microchemical Journal, 2015, 123: 105-110.
[70] 杜勇,朱园园,宋虎跃,等. 微量磷灰石中磷酸根氧同位素分析方法[J]. 地球科学,2019,44(2):456-462.

Du Yong, Zhu Yuanyuan, Song Huyue, et al. Analytical method for δ 18O of phosphate in trace apatite[J]. Earth Science, 2019, 44(2): 456-462.
[71] Joachimski M M, Lai X L, Shen S Z, et al. Climate warming in the latest Permian and the Permian-Triassic mass extinction[J]. Geology, 2012, 40(3): 195-198.
[72] Schobben M, Joachimski M M, Korn D, et al. Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction[J]. Gondwana Research, 2014, 26(2): 675-683.
[73] Trotter J A, Williams I S, Barnes C R, et al. New conodont δ 18O records of Silurian climate change: Implications for environmental and biological events[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 443: 34-48.
[74] Stephan E. Oxygen isotope analysis of animal bone phosphate: Method refinement, influence of consolidants, and reconstruction of palaeotemperatures for Holocene sites[J]. Journal of Archaeological Science, 2000, 27(6): 523-535.
[75] Pederzani S, Snoeck C, Wacker U, et al. Anion exchange resin and slow precipitation preclude the need for pretreatments in silver phosphate preparation for oxygen isotope analysis of bioapatites[J]. Chemical Geology, 2020, 534: 119455, doi: 10.1016/j.chemgeo.2019.119455 .
[76] 高建飞,丁悌平. 激光熔蚀微量氧同位素分析方法及其地质应用[J]. 地质论评,2008,54(1):139-144.

Gao Jianfei, Ding Tiping. Laser microprobe oxygen isotope analysis method and geology applications[J]. Geological Review, 2008, 54(1): 139-144.
[77] 王润,陈剑波,赵来时,等. 二次离子质谱微区原位牙形石氧同位素分析及其在古海表水温记录中的应用[J]. 世界地质,2013,32(4):652-658.

Wang Run, Chen Jianbo, Zhao Laishi, et al. In situ oxygen isotope analysis of conodonts by SIMS and its implication for paleo-sea surface temperature[J]. Global Geology, 2013, 32(4): 652-658.
[78] Aubert M, Williams I S, Boljkovac K, et al. In situ oxygen isotope micro-analysis of faunal material and human teeth using a SHRIMP II: A new tool for palaeo-ecology and archaeology[J]. Journal of Archaeological Science, 2012, 39(10): 3184-3194.
[79] 周丽芹, Williams I S,刘建辉,等. 牙形石SHRIMP微区原位氧同位素分析方法[J]. 地质学报,2012,86(4):611-618.

Zhou Liqin, Williams I S, Liu Jianhui, et al. Methodology of SHRIMP in-situ o isotopes analysis on conodont[J]. Acta Geologica Sinica, 2012, 86(4): 611-618.
[80] Li X H, Li W X, Wang X C, et al. Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range, South China: In situ zircon Hf-O isotopic constraints[J]. Science in China Series D: Earth Sciences, 2009, 52(9): 1262-1278.
[81] Li X H, Long W G, Li Q L, et al. Penglai zircon megacrysts: A potential new working reference material for microbeam determination of Hf–O isotopes and U–Pb age[J]. Geostandards and Geoanalytical Research, 2010, 34(2): 117-134.
[82] Rigo M, Trotter J A, Preto N, et al. Oxygen isotopic evidence for Late Triassic monsoonal upwelling in the northwestern Tethys[J]. Geology, 2012, 40(6): 515-518.
[83] Sun Y D, Wiedenbeck M, Joachimski M M, et al. Chemical and oxygen isotope composition of gem-quality apatites: Implications for oxygen isotope reference materials for secondary ion mass spectrometry (SIMS)[J]. Chemical Geology, 2016, 440: 164-178.
[84] Rigo M, Joachimski M M. Palaeoecology of Late Triassic conodonts: Constraints from oxygen isotopes in biogenic apatite[J]. Acta Palaeontologica Polonica, 2010, 55(3): 471-478.
[85] Wheeley J R, Jardine P E, Raine R J, et al. Paleoecologic and paleoceanographic interpretation of δ18O variability in Lower Ordovician conodont species[J]. Geology, 2018, 46(5): 467-470.
[86] Clark D L. Conodont biofacies and provincialism[M]. Geological Society of America Special Paper 196, 1984: 1-340.
[87] Rasmussen J A, Stouge S. Baltoscandian conodont biofacies fluctuations and their link to Middle Ordovician (Darriwilian) global cooling[J]. Palaeontology, 2018, 61(3): 391-416.
[88] Barnes C R, Fahreus L E. Provinces, communities, and the proposed nektobenthic habit of Ordovician conodontophorids[J]. Lethaia, 1975, 8(2): 133-149.
[89] Seddon G, Sweet W C. An ecologic model for conodonts[J]. Journal of Paleontology, 1971, 45(5): 869-880.
[90] Huang C, Joachimski M M, Gong Y M. Did climate changes trigger the Late Devonian Kellwasser Crisis? Evidence from a high-resolution conodont δ 18OPO4 record from South China[J]. Earth and Planetary Science Letters, 2018, 495: 174-184.
[91] Sweet W C. The conodonta: Morphology, taxonomy, paleoecology, and evolutionary history of a long-extinct animal phylum[M]. Oxford: Clarendon Press, 1988.
[92] Buggisch W, Joachimski M M, Lehnert O, et al. Did intense volcanism trigger the first Late Ordovician icehouse?[J]. Geology, 2010, 38(4): 327-330.
[93] Quinton P C, Macleod K G. Oxygen isotopes from conodont apatite of the midcontinent, US: Implications for Late Ordovician climate evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 404: 57-66.
[94] MacLeod K G. Conodonts and the paleoclimatological and paleoecological applications of phosphate δ 18O measurements[J]. The Paleontological Society Papers, 2012, 18: 69-84.
[95] Barham M, Joachimski M M, Murray J, et al. Diagenetic alteration of the structure and δ 18O signature of Palaeozoic fish and conodont apatite: Potential use for corrected isotope signatures in palaeoenvironmental interpretation[J]. Chemical Geology, 2012, 298-299: 11-19.
[96] Epstein A G, Epstein J B, Harris L D. Conodont color alteration: An index to organic metamorphism[R]. Washington: United States Government Printing Office, 1977: 1-27.
[97] Rejebian V A, Harris A G, Huebner J S. Conodont color and textural alteration: An index to regional metamorphism, contact metamorphism, and hydrothermal alteration[J]. Geological Society of America Bulletin, 1987, 99(4): 471-479.
[98] Zhang L, Cao L, Zhao L S, et al. Raman spectral, elemental, crystallinity, and oxygen-isotope variations in conodont apatite during diagenesis[J]. Geochimica et Cosmochimica Acta, 2017, 210: 184-207.
[99] Shemesh A. Crystallinity and diagenesis of sedimentary apatites[J]. Geochimica et Cosmochimica Acta, 1990, 54(9): 2433-2438.
[100] Pucéat E, Reynard B, Lécuyer C. Can crystallinity be used to determine the degree of chemical alteration of biogenic apatites?[J]. Chemical Geology, 2004, 205(1/2): 83-97.
[101] Habermann D, Götte T, Meijer J, et al. High resolution rare-earth elements analyses of natural apatite and its application in geo-sciences: Combined micro-PIXE, quantitative CL spectroscopy and electron spin resonance analyses[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2000, 161-163: 846-851.
[102] Golding M L, McMillan R. The impacts of diagenesis on the geochemical characteristics and Color Alteration Index of conodonts[J]. Palaeobiodiversity and Palaeoenvironments, 2020, doi: 10.1007/s12549-020-00447-y .
[103] McMillan R, Golding M. Thermal maturity of carbonaceous material in conodonts and the Color Alteration Index: Independently identifying maximum temperature with Raman spectroscopy[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 534: 109290, doi: 10.1016/j.palaeo.2019.109290 .
[104] Chang S J, Blake R E. Precise calibration of equilibrium oxygen isotope fractionations between dissolved phosphate and water from 3 to 37 ℃[J]. Geochimica et Cosmochimica Acta, 2015, 150: 314-329.
[105] Song H J, Wignall P B, Song H Y, et al. Seawater temperature and dissolved oxygen over the past 500 million years[J]. Journal of Earth Science, 2019, 30(2): 236-243.
[106] Goudemand N, Romano C, Leu M, et al. Dynamic interplay between climate and marine biodiversity upheavals during the early Triassic Smithian-Spathian biotic crisis[J]. Earth-Science Reviews, 2019, 195: 169-178.
[107] Ryb U, Eiler J M. Oxygen isotope composition of the Phanerozoic ocean and a possible solution to the dolomite problem[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26): 6602-6607.
[108] Jaffrés J B D, Shields G A, Wallmann K. The oxygen isotope evolution of seawater: A critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years[J]. Earth-Science Reviews, 2007, 83(1/2): 83-122.
[109] Johnson B W, Wing B A. Limited Archaean continental emergence reflected in an early Archaean 18O-enriched ocean[J]. Nature Geoscience, 2020, 13(3): 243-248.
[110] Macarewich S I, Poulsen C J, Montañez I P. Simulation of oxygen isotopes and circulation in a Late Carboniferous epicontinental sea with implications for proxy records[J]. Earth and Planetary Science Letters, 2021, 559: 116770, doi: 10.1016/j.epsl.2021.116770 .
[111] LeGrande A N, Schmidt G A. Global gridded data set of the oxygen isotopic composition in seawater[J]. Geophysical Research Letters, 2006, 33(12): L12604, doi: 10.1029/2006GL026011 .
[112] Rohling E J. Oxygen isotope composition of seawater[M]//Elias S A. The encyclopedia of Quaternary science. Amsterdam: Elsevier, 2013, 2: 915-922.
[113] Albanesi G L, Barnes C R, Trotter J A, et al. Comparative Lower-Middle Ordovician conodont oxygen isotope palaeothermometry of the Argentine Precordillera and Laurentian margins[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 549: 109115, doi: 10.1016/j.palaeo.2019.03.016 .
[114] Foster G L, Royer D L, Lunt D J. Future climate forcing potentially without precedent in the last 420 million years[J]. Nature Communications, 2017, 8: 14845.
[115] Chen J, Shen S Z, Zhang Y C, et al. Abrupt warming in the latest Permian detected using high-resolution in situ oxygen isotopes of conodont apatite from Abadeh, central Iran[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560: 109973, doi: 10.1016/j.palaeo.2020.109973 .
[116] Sun Y D, Orchard M J, Kocsis Á T, et al. Carnian–Norian (Late Triassic) climate change: Evidence from conodont oxygen isotope thermometry with implications for reef development and Wrangellian tectonics[J]. Earth and Planetary Science Letters, 2020, 534: 116082, doi: 10.1016/j.epsl.2020.116082 .
[117] Chen B, Joachimski M M, Wang X D, et al. Ice volume and paleoclimate history of the Late Paleozoic Ice Age from conodont apatite oxygen isotopes from Naqing (Guizhou, China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 151-161.
[118] Jin J S, Zhan R B, Wu R C. Equatorial cold-water tongue in the Late Ordovician[J]. Geology, 2018, 46(9): 759-762.
[119] Alberti M, Leshno Y, Fürsich F T, et al. Stress in the tropics? Impact of a latitudinal seawater δ18O gradient on Middle Jurassic temperature reconstructions at low latitudes[J]. Geology, 2020, 48(12): 1210-1215.
[120] Zhu J, Poulsen C J, Otto-Bliesner B L, et al. Simulation of early Eocene water isotopes using an Earth system model and its implication for past climate reconstruction[J]. Earth and Planetary Science Letters, 2020, 537: 116164, doi: 10.1016/j.epsl.2020.116164 .
[121] Herrmann A D, Barrick J E, Algeo T J. The relationship of conodont biofacies to spatially variable water mass properties in the Late Pennsylvanian Midcontinent Sea[J]. Paleoceanography, 2015, 30(3): 269-283.