[1] Sloss L L. Sequences in the cratonic interior of North America[J]. Geological Society of America Bulletin, 1963, 74(2): 93-114.
[2] Vail P R, Mitchum R M, Thompson S. Seismic stratigraphy and global changes of sea level (Part 4) Global cycles of relative changes of sea level[C]. AAPG Memoir 26, 1977: 83-98.
[3] van Wagoner J C, Posamentier H W, Mitchum R M, et al. An overview of the fundamentals of sequence stratigraphy and key definitions[M]//Wilgus C K, Hastings B S, Posamentier H, et al. Sea-level changes: An integrated approach. SEPM Society for Sedimentary Geology, 1988: 39-45.
[4] Vail P R, Hardenbol J R. Effect of sea level change on shelf-slope boundary: abstract[J]. AAPG Bulletin, 1981, 65(5): 1003.
[5] Tucker M E. Carbonate diagenesis and sequence stratigraphy[M]//Wright V P. Sedimentology review/1. Oxford: Blackwell Scientific Publications, 1993.
[6] 邱燕. 南海西南部主要盆地碳酸盐岩层序地层学解释[J]. 南海地质研究,1996(8):62-74.

Qiu Yan. The interpretation of carbonate sequence stratigraphy in the southwestern region of South China Sea[J]. Geological Research of South China Sea, 1996(8): 62-74.
[7] 魏魁生,徐怀大,叶淑芬. 鄂尔多斯盆地北部奥陶系碳酸盐岩层序地层研究[J]. 地球科学:中国地质大学学报,1996,21(1):1-10.

Wei Kuisheng, Xu Huaida, Ye Shufen. Carbonate sequence stratigraphy of Ordovician in the northern Ordos Basin[J]. Earth Science: Journal of China University of Geosciences, 1996, 21(1): 1-10.
[8] 张振生,刘社平. 塔里木盆地下古生界碳酸盐岩层序地层学研究[J]. 石油地球物理勘探,1995,30(2):245-256.

Zhang Zhensheng, Liu Sheping. Sequence stratigraphy analysis of carbonate series of Lower Palaeozoic group in the Talimu Basin[J]. Oil Geophysical Prospecting, 1995, 30(2): 245-256.
[9] 蔡忠贤,贾振远. 碳酸盐岩台地三级层序界面的讨论[J]. 地球科学:中国地质大学学报,1997,22(5):456-459.

Cai Zongxian, Jia Zhenyuan. Quantitative research on sea level change[J]. Earth Science: Journal of China University of Geosciences, 1997, 22(5): 456-459.
[10] 陈方鸿,谢庆宾,王贵文. 碳酸盐岩成岩作用与层序地层学关系研究:以鄂尔多斯盆地寒武系为例[J]. 岩相古地理,1999,19(1):20-24.

Chen Fanghong, Xie Qingbin, Wang Guiwen. Carbonate diagenesis and sequence stratigraphy: An example from the Cambrian strata in the Ordos Basin[J]. Sedimentary Facies and Palaeogeography, 1999, 19(1): 20-24.
[11] 刘忠宝,于炳松,李廷艳,等. 塔里木盆地塔中地区中上奥陶统碳酸盐岩层序发育对同生期岩溶作用的控制[J]. 沉积学报,2004,22(1):103-109.

Liu Zhongbao, Yu Bingsong, Li Tingyan, et al. Sequence development controls on iyngenesis karst of the Middle-Upper Ordovician carbonate in Tazhong area, Tarim Basin[J]. Acta Sedimentologica Sinica, 2004, 22(1): 103-109.
[12] 高雁飞,傅恒,王同,等. 塔里木盆地奥陶系层序界面特征及其对碳酸盐岩岩溶的控制[J]. 新疆地质,2015,33(3):362-367.

Gao Yanfei, Fu Heng, Wang Tong, et al. The features of Ordovician sequence boundaries and its controls on carbonate karst in Tarim Basin[J]. Xinjiang Geology, 2015, 33(3): 362-367.
[13] 刘策,张义杰,李洪辉,等. 塔里木盆地古城地区奥陶系鹰山组层序地层划分及其地质意义[J]. 东北石油大学学报,2017,41(1):82-96,122.

Liu Ce, Zhang Yijie, Li Honghui, et al. Sequence stratigraphy classification and its geologic implications of Ordovician Yingshan Formation in Gucheng area, Tarim Basin[J]. Journal of Northeast Petroleum University, 2017, 41(1): 82-96, 122.
[14] 傅恒,韩建辉,孟万斌,等. 塔里木盆地塔中北坡奥陶系碳酸盐岩岩溶储层的形成机理[J]. 天然气工业,2017,37(3):25-36.

Fu Heng, Han Jianhui, Meng Wanbin, et al. Forming mechanism of the Ordovician karst carbonate reservoirs on the northern slope of central Tarim Basin[J]. Natural Gas Industry, 2017, 37(3): 25-36.
[15] 赵锐,赵腾,李慧莉,等. 塔里木盆地顺托果勒地区中下奥陶统鹰山组与一间房组沉积相与旋回地层[J]. 东北石油大学学报,2019,43(4):1-16.

Zhao Rui, Zhao Teng, Li Huili, et al. Sedimentary facies and cyclic stratigraphy of Yingshan and Yijianfang Formations of Lower-Middle Ordovician in Shuntuoguole area, Tarim Basin[J]. Journal of Northeast Petroleum University, 2019, 43(4): 1-16.
[16] 张智礼,李慧莉,焦存礼,等. 塔里木盆地顺托果勒地区奥陶系鹰山组—恰尔巴克组地层划分对比研究[J]. 地学前缘,2021,28(1):90-103.

Zhang Zhili, Li Huili, Jiao Cunli, et al. Stratigraphic division and correlation of the Ordovician Yingshan and Qrebake Formations in the Shuntogole area, Tarim Basin[J]. Earth Science Frontiers, 2021, 28(1): 90-103.
[17] 赵宗举,潘文庆,张丽娟,等. 塔里木盆地奥陶系层序地层格架[J]. 大地构造与成矿学,2009,33(1):175-188.

Zhao Zongju, Pan Wenqing, Zhang Lijuan, et al. Sequence stratigraphy in the Ordovician in the Tarim Basin[J]. Geotectonica et Metallogenia, 2009, 33(1): 175-188.
[18] 潘文庆,王招明,孙崇浩,等. 塔里木盆地下古生界碳酸盐岩层序界面类型划分及其意义[J]. 石油与天然气地质,2011,32(4):531-541.

Pan Wenqing, Wang Zhaoming, Sun Chonghao, et al. Classifications of sequence boundaries in the Lower Paleozoic carbonates in Tarim Basin and their significances[J]. Oil & Gas Geology, 2011, 32(4): 531-541.
[19] 马永生,蔡勋育,赵培荣. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘,2011,18(4):181-192.

Ma Yongsheng, Cai Xunyu, Zhao Peirong. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J]. Earth Science Frontiers, 2011, 18(4): 181-192.
[20] 马永生,何治亮,赵培荣,等. 深层—超深层碳酸盐岩储层形成机理新进展[J]. 石油学报,2019,40(12):1415-1425.

Ma Yongsheng, He Zhiliang, Zhao Peirong, et al. A new progress in formation mechanism of deep and ultra-deep carbonate reservoir[J]. Acta Petrolei Sinica, 2019, 40(12): 1415-1425.
[21] 于炳松,陈建强,林畅松. 塔里木盆地奥陶系层序地层格架及其对碳酸盐岩储集体发育的控制[J]. 石油与天然气地质,2005,26(3):305-309,316.

Yu Bingsong, Chen Jianqiang, Lin Changsong. Sequence stratigraphic framework and its control on development of Ordovician carbonate reservoir in Tarim Basin[J]. Oil & Gas Geology, 2005, 26(3): 305-309, 316.
[22] 樊太亮,于炳松,高志前. 塔里木盆地碳酸盐岩层序地层特征及其控油作用[J]. 现代地质,2007,21(1):57-65.

Fan Tailiang, Yu Bingsong, Gao Zhiqian. Characteristics of carbonate sequence stratigraphy and its control on oil-gas in Tarim Basin[J]. Geoscience, 2007, 21(1): 57-65.
[23] 李映涛,漆立新,张哨楠,等. 塔里木盆地顺北地区中—下奥陶统断溶体储层特征及发育模式[J]. 石油学报,2019,40(12):1470-1484.

Li Yingtao, Qi Lixin, Zhang Shaonan, et al. Characteristics and development mode of the Middle and Lower Ordovician fault-karst reservoir in Shunbei area, Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(12): 1470-1484.
[24] 王昱翔,王斌,顾忆,等. 塔里木盆地顺北地区中下奥陶统缝洞充填方解石地球化学特征及地质意义[J]. 石油实验地质,2019,41(4):583-592,597.

Wang Yuxiang, Wang Bin, Gu Yi, et al. Geochemical characteristics and geological significance of calcite filled fractures and caves in Middle-Lower Ordovician, northern Shuntuoguole area, Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41(4): 583-592, 597.
[25] 王玉伟,陈红汉,郭会芳,等. 塔里木盆地顺1走滑断裂带超深储层油气充注历史[J]. 石油与天然气地质,2019,40(5):972-989.

Wang Yuwei, Chen Honghan, Guo Huifang, et al. Hydrocarbon charging history of the ultra-deep reservoir in Shun 1 strike-slip fault zone, Tarim Basin[J]. Oil & Gas Geology, 2019, 40(5): 972-989.
[26] 马乃拜,金圣林,杨瑞召,等. 塔里木盆地顺北地区断溶体地震反射特征与识别[J]. 石油地球物理勘探,2019,54(2):398-403.

Ma Naibai, Jin Shenglin, Yang Ruizhao, et al. Seismic response characteristics and identification of fault-karst reservoir in Shunbei area, Tarim Basin[J]. Oil Geophysical Prospecting, 2019, 54(2): 398-403.
[27] 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探,2020,25(1):102-111.

Qi Lixin. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1): 102-111.
[28] 康玉柱. 塔里木盆地大油气田勘探方向[J]. 新疆石油地质,2004,25(6):581-583.

Kang Yuzhu. Targets for exploration of giant oil-gas fields in Tarim Basin[J]. Xinjiang Petroleum Geology, 2004, 25(6): 581-583.
[29] 刘宝增,漆立新,李宗杰,等. 顺北地区超深层断溶体储层空间雕刻及量化描述技术[J]. 石油学报,2020,41(4):412-420.

Liu Baozeng, Qi Lixin, Li Zongjie, et al. Spatial characterization and quantitative description technology for ultra-deep fault-karst reservoirs in the Shunbei area[J]. Acta Petrolei Sinica, 2020, 41(4): 412-420.
[30] 漆立新,李宗杰,吕海涛,等. 塔里木叠合盆地构造沉积演化与油气勘探[M]. 北京:科学出版社,2020:19-22.

Qi Lixin, Li Zongjie, Haitao Lü, et al. Tectonic sedimentary evolution and oil and gas exploration in Tarim superimposed basin[M]. Beijing: Science Press, 2020: 19-22.
[31] 陈明,许效松,万方,等. 塔里木盆地柯坪地区中下奥陶统碳酸盐岩露头层序地层学研究[J]. 沉积学报,2004,22(1):110-116.

Chen Ming, Xu Xiaosong, Wan Fang, et al. Study on outcrop sequence stratigraphy of the Lower-Middle Ordovician strata in Keping Tarim Basin[J]. Acta Sedimentologica Sinica, 2004, 22(1): 110-116.
[32] 王招明,姜仁旗,吴金才,等. 塔里木盆地寒武系—奥陶系碳酸盐岩层序地层特征[J]. 中国石油勘探,2011,16(1):9-14.

Wang Zhaoming, Jiang Renqi, Wu Jincai, et al. Carbonate sequence stratigraphic features of Cambrian-Ordovician, Tarim Basin[J]. China Petroleum Exploration, 2011, 16(1): 9-14.
[33] 瞿辉,徐怀大,郭齐军. 塔里木盆地北部奥陶系层序地层研究[J]. 现代地质,1997,11(1):8-13.

Qu Hui, Xu Huaida, Guo Qijun. Study on sequence stratigraphy of Ordovician in north Tarim Basin[J]. Geoscience, 1997, 11(1): 8-13.
[34] 胡明毅,钱勇,胡忠贵,等. 塔里木柯坪地区奥陶系层序地层与同位素地球化学响应特征[J]. 岩石矿物学杂志,2010,29(2):199-205.

Hu Mingyi, Qian Yong, Hu Zhonggui, et al. Carbon isotopic and element geochemical responses of carbonate rocks and Ordovician sequence stratigraphy in Keping area, Tarim Basin[J]. Acta Petrologica et Mineralogica, 2010, 29(2): 199-205.
[35] Hunt D, Tucker M E. Stranded parasequences and the forced regressive wedge systems tract: Deposition during base-level'fall[J]. Sedimentary Geology, 1992, 81(1/2): 1-9.
[36] Johnson J G, Klapper G, Sandberg C A. Devonian eustatic fluctuations in Euramerica[J]. Geological Society of America Bulletin, 1985, 96(5): 567-587.
[37] Galloway W E. Genetic stratigraphic sequences in Basin analysis I: Architecture and genesis of flooding-surface bounded depositional units[J]. AAPG Bulletin, 1989, 73(2): 125-142.
[38] Cross T A. High resolution stratigraphic correlation from the perspective of base-level cycles and sediment accommodation[C]//Proceeding of northwestern European sequence stratigraphy congress, 1994: 105-123.
[39] Posarnentier H W, Allen G P. Siliciclastic sequence stratigraphy-concepts and applications[M]. SEPM Society for Sedimentary Geology, 1999, 7: 210.
[40] Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235(4793): 1156-1167.
[41] Haq B U, Schutter S R. A Chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68.
[42] 赵宗举. 全球海平面变化指标及海相构造层序研究方法:以塔里木盆地奥陶系为例[J]. 石油学报,2015,36(3):262-273.

Zhao Zongju. Indicators of global sea-level change and research methods of marine tectonic sequences: Take Ordovician of Tarim Basin as an example[J]. Acta Petrolei Sinica, 2015, 36(3): 262-273.
[43] 张元动,詹仁斌,甄勇毅,等. 中国奥陶纪综合地层和时间框架[J]. 中国科学(D辑):地球科学,2019,49(1):66-92.

Zhang Yuandong, Zhan Renbin, Zhen Yongyi, et al. Ordovician integrative stratigraphy and timescale of China[J]. Science China (Seri. D): Earth Sciences, 2019, 49(1): 66-92.
[44] 成俊峰,董少峰,陈中阳. 塔里木盆地顺北地区中—晚奥陶世稳定碳同位素特征及意义[J]. 地层学杂志,2020,44(4):366-372.

Cheng Junfeng, Dong Shaofeng, Chen Zhongyang. Characteristics and correlation of the stable carbon isotope records in the Middle to Late Ordovician carbonates in the Shunbei area, Tarim Basin, NW China[J]. Journal of Stratigraphy, 2020, 44(4): 366-372.
[45] 康玉柱. 塔里木盆地大气田形成的地质条件[J]. 石油与天然气地质,2001,22(1):21-25.

Kang Yuzhu. Geological condition for forming big gasfields in Tarim Basin[J]. Oil & Gas Geology, 2001, 22(1): 21-25.
[46] Loucks R G, Sarg J F. Carbonate sequence stratigraphy: Recent developments and applications[M]. Tulsa, Okla: American Association of Petroleum Geologists, 1993.
[47] Catuneanu O, Galloway W E, Kendall C G S C, et al. Sequence stratigraphy: Methodology and nomenclature[J]. Newsletters on Stratigraphy, 2011, 44(3): 173-245.
[48] 康玉柱. 塔里木盆地寒武—奥陶系古岩溶特征与油气分布[J]. 新疆石油地质,2005,26(5):472-480.

Kang Yuzhu. Palaeokarst of Cambro-Ordovician and oil-gas distribution in Tarim Basin[J]. Xinjiang Petroleum Geology, 2005, 26(5): 472-480.
[49] 鲁新便,胡文革,汪彦,等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质,2015,36(3):347-355.

Lu Xinbian, Hu Wenge, Wang Yan, et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347-355.
[50] James N P, Choquette P W. Paleokarst[M]. New York: Springer-Verlag, 1988: 416.
[51] Lu Z Y, Li Y T, Ye N, et al. Fluid inclusions record hydrocarbon charge history in the Shunbei area, Tarim Basin, NW China[J]. Geofluids, 2020, 2020: 8847247.
[52] 程传捷,于炳松,武重阳,等. 塔里木盆地顺北地区奥陶系一间房组碳酸盐岩成岩相研究[J]. 石油实验地质,2020,42(1):42-52.

Cheng Chuanjie, Yu Bingsong, Wu Chongyang, et al. Diagenetic facies of carbonate rocks in Yijianfang Formation, Shunbei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 42-52.
[53] 尤东华,曹自成,徐明军,等. 塔里木盆地奥陶系鹰山组多类型白云岩储层成因机制[J]. 石油与天然气地质,2020,41(1):92-101.

You Donghua, Cao Zicheng, Xu Mingjun, et al. Genetic mechanism of multi-type dolomite reservoirs in Ordovician Yingshan Formation, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(1): 92-101.