[1] de Filippi F. Sulla costituzione geologica della pianura e delle colline della Lombardia[M]. Milano: Tipogr. Lampato, 1839: 225-247.
[2] Critelli S, Marsaglia K M, Busby C J. Tectonic history of a Jurassic Backarc-Basin sequence (the Gran Cañon Formation, Cedros Island, Mexico), based on compositional modes of tuffaceous deposits[J]. GSA Bulletin, 2002, 114(5): 515-527.
[3] 林畅松,夏庆龙,施和生,等. 地貌演化、源—汇过程与盆地分析[J]. 地学前缘,2015,22(1):9-20.

Lin Changsong, Xia Qinglong, Shi Hesheng, et al. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 2015, 22(1): 9-20.
[4] Helland-Hansen W, Sømme T O, Martinsen O J, et al. Deciphering Earth’s natural hourglasses: Perspectives on source-to-sink analysis[J]. Journal of Sedimentary Research, 2016, 86(9): 1008-1033.
[5] 杨江海,马严. 源—汇沉积过程的深时古气候意义[J].地球科学,2017,42(11):1910-1921.

Yang Jianghai, Ma Yan. Paleoclimate perspectives of source-to-sink sedimentary processes[J]. Earth Science, 2017, 42(11): 1910-1921.
[6] 朱红涛,徐长贵,朱筱敏,等. 陆相盆地源—汇系统要素耦合研究进展[J]. 地球科学,2017,42(11):1851-1870.

Zhu Hongtao, Xu Changgui, Zhu Xiaomin, et al. Advances of the source-to-sink units and coupling model research in continental basin[J]. Earth Science, 2017, 42(11): 1851-1870.
[7] Blum M, Martin J, Milliken K, et al. Paleovalley systems: Insights from Quaternary analogs and experiments[J]. Earth-Science Reviews, 2013, 116: 128-169.
[8] Caracciolo L. Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: Review, application and future development[J]. Earth-Science Reviews, 2020, 209: 103226.
[9] Michael N A, Whittaker A C, Allen P A. The functioning of sediment routing systems using a mass balance approach: Example from the Eocene of the southern Pyrenees[J]. The Journal of Geology, 2013, 121(6): 581-606.
[10] Romans B W, Castelltort S, Covault J A, et al. Environmental signal propagation in sedimentary systems across timescales[J]. Earth-Science Reviews, 2016, 153: 7-29.
[11] Duller R A, Armitage J J, Manners H R, et al. Delayed sedimentary response to abrupt climate change at the Paleocene-Eocene boundary, northern Spain[J]. Geology, 2019, 47(2): 159-162.
[12] Toby S C, Duller R A, de Angelis S, et al. A stratigraphic framework for the preservation and shredding of environmental signals[J]. Geophysical Research Letters, 2019, 46(11): 5837-5845.
[13] 徐杰,姜在兴. 碎屑岩物源研究进展与展望[J]. 古地理学报,2019,21(3):379-396.

Xu Jie, Jiang Zaixing. Provenance analysis of clastic rocks: Current research status and prospect[J]. Journal of Palaeogeography, 2019, 21(3): 379-396.
[14] Resentini A, Goren L, Castelltort S, et al. Partitioning sediment flux by provenance and tracing erosion patterns in Taiwan[J]. Journal of Geophysical Research: Earth Surface, 2017, 122(7): 1430-1454.
[15] Augustsson C, Reker A. Cathodolumenescence spectra of quartz as provenance indicators revisited[J]. Journal of Sedimentary Research, 2012, 82(8): 559-570.
[16] Stalder R, von Eynatten H, Costamoling J, et al. OH in detrital quartz grains as tool for provenance analysis: Case studies on various settings from Cambrian to recent[J]. Sedimentary Geology, 2019, 389: 121-126.
[17] O’Sullivan G J, Chew D M, Morton A C, et al. An integrated apatite geochronology and geochemistry tool for sedimentary provenance analysis[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(4): 1309-1326.
[18] Chew D, O’Sullivan G, Caracciolo L, et al. Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis[J]. Earth-Science Reviews, 2020, 202: 103093.
[19] 何登洋,邱昆峰,张莲,等. 华北克拉通兴城早白垩世玄武玢岩锆石、金红石地球化学特征及其地质意义[J]. 岩石矿物学杂志,2020,39(6):735-750.

He Dengyang, Qiu Kunfeng, Zhang Lian, et al. Zircon and rutile geochemistry of the Early Cretaceous basaltic porphyry from Xingcheng in the North China Craton and its geodynamic implications[J]. Acta Petrologica et Mineralogica, 2020, 39(6): 735-750.
[20] Andò S, Garzanti E. Raman spectroscopy in heavy-mineral studies[J]. Geological Society, London, Special Publications, 2014, 386: 395-412.
[21] Lünsdorf N K, Kalies J, Ahlers P, et al. Semi-automated heavy-mineral analysis by Raman spectroscopy[J]. Minerals, 2019, 9(7): 385.
[22] 许苗苗,魏晓椿,杨蓉,等. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展,2021,36(2):154-171.

Xu Miaomiao, Wei Xiaochun, Yang Rong, et al. Research progress of provenance tracing method for heavy mineral analysis[J]. Advances in Earth Science, 2021, 36(2): 154-171.
[23] Chew D, Drost K, Petrus J A. Ultrafast, > 50 Hz LA-ICP-MS spot analysis applied to U-Pb dating of zircon and other U-bearing minerals[J]. Geostandards and Geoanalytical Research, 2019, 43(1): 39-60.
[24] Roberts N M W, Spencer C J. The zircon archive of continent formation through time[J]. Geological Society, London, Special Publications, 2015, 389: 197-225.
[25] Wu L L, Mei L F, Liu Y S, et al. Multiple provenance of rift sediments in the composite basin-mountain system: Constraints from detrital zircon U-Pb geochronology and heavy minerals of the Early Eocene Jianghan Basin, central China[J]. Sedimentary Geology, 2017, 349: 46-61.
[26] 陈贺贺,朱筱敏,黄捍东,等. 基于碎屑锆石定年的饶阳凹陷蠡县斜坡沙河街组物源分析[J]. 地球科学,2017,42(11):1955-1971.

Chen Hehe, Zhu Xiaomin, Huang Handong, et al. Sediment provenance of Shahejie Formation in Lixian slope of Raoyang Depression based on the detrital zircon dating analysis[J]. Earth Science, 2017, 42(11): 1955-1971.
[27] Tan M X, Zhu X M, Liu W, et al. Sediment routing systems in the second member of the Eocene Shahejie Formation in the Liaoxi Sag, offshore Bohai Bay Basin: A synthesis from tectono-sedimentary and detrital zircon geochronological constraints[J]. Marine and Petroleum Geology, 2018, 94: 95-113.
[28] Zoleikhaei Y, Mulder J A, Cawood P A. Integrated detrital rutile and zircon provenance reveals multiple sources for Cambrian sandstones in North Gondwana[J]. Earth-Science Reviews, 2021, 213: 103462.
[29] 张凌,王平,陈玺赟,等. 碎屑锆石U-Pb年代学数据获取、分析与比较[J]. 地球科学进展,2020,35(4):414-430.

Zhang Ling, Wang Ping, Chen Xiyun, et al. Review in detrital zircon U-Pb geochronology: Data acquisition, analysis and comparison[J]. Advances in Earth Science, 2020, 35(4): 414-430.
[30] 邵龙义,王学天,李雅楠,等. 深时源—汇系统古地理重建方法评述[J]. 古地理学报,2019,21(1):67-81.

Shao Longyi, Wang Xuetian, Li Yanan, et al. Review on palaeogeographic reconstruction of deep-time source-to-sink systems[J]. Journal of Palaeogeography, 2019, 21(1): 67-81.
[31] Wang R, Ji Y L, Colombera L, et al. Axial and transverse depositional systems of a syn-rift basin fill (Bohai Bay Basin, China)[J]. Marine and Petroleum Geology, 2021, 128: 105045.
[32] 李红,李飞,龚峤林,等. 混积岩中重矿物形貌学特征及物源意义:以川北寒武系第二统仙女洞组为例[J]. 沉积学报,2021,39(3):525-539.

Li Hong, Li Fei, Gong Qiaolin, et al. Morphological characteristics and provenance significance of heavy minerals in the mixed siliciclastic-carbonate sedimentation: A case study from the Xiannüdong Formation, Cambrian (Series 2), northern Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(3): 525-539.
[33] 李姝睿,孙高远,茅昌平,等. 江苏沿岸辐射沙脊物源分析:碎屑重矿物与锆石年代学的证据[J/OL]. 沉积学报. https://doi.org/10.14027/j.issn.1000-0550.2022.023.

Li Shurui, Sun Gaoyuan, Mao Changping, et al. The provenance analysis of radial sand ridges off the Jiangsu coast, East China: Evidence from the heavy mineral compositions and zircon geochronology[J/OL]. Acta Sedimentologica Sinica. https://doi.org/10.14027/j.issn.1000-0550.2022.023.
[34] 柴君林,王艳忠,王铸坤,等. 惠民凹陷江家店地区古近系沙河街组物源体系特征与演化[J/OL]. 沉积学报. https://doi.org/10.14027/j.issn.1000-0550.2022.028.

Chai Junlin, Wang Yanzhong, Wang Zhukun, et al. Characteristics and evolution of the provenance systems from the Paleogene Shahejie Formation in the Jiangjiadian area, Huimin Sag[J/OL]. Acta Sedimentologica Sinica. https://doi.org/10.14027/j.issn.1000-0550.2022.028.
[35] 刘平华,杨崇辉,杜利林,等. 赞皇杂岩官都岩群时代与物源:来自黑云变粒岩与石英岩碎屑锆石U-Pb-Hf同位素与稀土元素组成的约束[J]. 岩石矿物学杂志,2022,41(2):247-280.

Liu Pinghua, Yang Chonghui, Du Lilin, et al. Depositional age and provenance of the Guandu Group in the Zanhuang complex, North China Craton: Constraints from detrital zircon U-Pb-Hf isotopic and rare earth element compositions in the biotite leptynite and quartzite[J]. Acta Petrologica et Mineralogica, 2022, 41(2): 247-280.
[36] 王义龙,周万蓬,刘平华,等. 武功山杂岩高滩组沉积时代与物源特征:来自含榴云母石英片岩锆石U-Pb年龄与稀土元素组成的新证据[J]. 地球科学,2022,47(3):1078-1093.

Wang Yilong, Zhou Wanpeng, Liu Pinghua, et al. Depositional timing and provenance characteristics of the Early Paleozoic Gaotan Formation in the Wugongshan area, Jiangxi province: New evidence from detrital zircon U-Pb dating and rare earth element compositions of garnet-bearing mica quartz schist[J]. Earth Science, 2022, 47(3): 1078-1093.
[37] 王颖,赵锡奎,高博禹. 济阳坳陷构造演化特征[J]. 成都理工学院学报,2002,29(2):181-187.

Wang Ying, Zhao Xikui, Gao Boyu. Characters of tectonic evolution of the Jiyang Depression[J]. Journal of Chengdu University of Technology, 2002, 29(2): 181-187.
[38] 王艳. 沾化、车镇凹陷盆地结构特征分析[D]. 青岛:中国石油大学(华东),2011.

Wang Yan. Basin structure characteristics analysis of Zhanhua Sag and Chezhen Sag[D]. Qingdao: China University of Petroleum (East China), 2011.
[39] 王真. 渤南洼陷沙四下亚段沉积体系研究[D]. 青岛:中国石油大学(华东),2013.

Wang Zhen. The sedimentary system study in the lower Fourth member of Shahejie Formation in the Bonan subsag[D]. Qingdao: China University of Petroleum (East China), 2013.
[40] 陈阳,张扬,朱正杰,等. 济阳坳陷渤南洼陷沙四下亚段沉积序列及石油地质意义[J]. 中国石油勘探,2019,24(3):313-322.

Chen Yang, Zhang Yang, Zhu Zhengjie, et al. Early sedimentary sequence and petroleum geological significance of faulted basins: A case study on the lower Es4 in Bonan Sag, Jiyang Depression[J]. China Petroleum Exploration, 2019, 24(3): 313-322.
[41] 宋国奇,王永诗,程付启,等. 济阳坳陷古近系二级层序界面厘定及其石油地质意义[J]. 油气地质与采收率,2014,21(5):1-7.

Song Guoqi, Wang Yongshi, Cheng Fuqi, et al. Ascertaining secondary-order sequence of Palaeogene in Jiyang Depression and its petroleum geological significance[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(5): 1-7.
[42] 雷玮琰,施光海,刘迎新. 不同成因锆石的微量元素特征研究进展[J]. 地学前缘,2013,20(4):274-284.

Lei Weiyan, Shi Guanghai, Liu Yingxin. Research progress on trace element characteristics of zircons of different origins[J]. Earth Science Frontiers, 2013, 20(4): 274-284.
[43] 蔡长娥. 沉积盆地碎屑锆石低温热年代学研究[D]. 北京:中国石油大学(北京),2017.

Cai Chang’e. Detrital zircon low-temperature thermochronology in sedimentary basin[D]. Beijing: China University of Petroleum (Beijing), 2017.
[44] 谈明轩,朱筱敏,张自力,等. 古“源—汇”系统沉积学问题及基本研究方法简述[J]. 石油与天然气地质,2020,41(5):1107-1118.

Tan Mingxuan, Zhu Xiaomin, Zhang Zili, et al. Summary of sedimentological issues and fundamental approaches in terms of ancient “source-to-sink” systems[J]. Oil & Gas Geology, 2020, 41(5): 1107-1118.
[45] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42: 313-345.
[46] 赵振华. 微量元素地球化学原理[M]. 2版. 北京:科学出版社,2016.

Zhao Zhenhua. Principles of trace element geochemistry[M]. 2nd ed. Beijing: Science Press, 2016.
[47] 蒋赟,潘世乐,秦彩虹,等. 柴达木盆地北缘平台地区下干柴沟组下段稀土元素特征及物源分析[J]. 天然气地球科学,2020,31(11):1537-1547.

Jiang Yun, Pan Shile, Qin Caihong, et al. Characteristics and provenance analysis of rare earth elements in the lower section of Xiaganchaigou Formation in the platform area of the northern margin of Qaidam Basin[J]. Natural Gas Geoscience, 2020, 31(11): 1537-1547.
[48] 沈立建,刘成林,王立成. 云南兰坪盆地云龙组上段稀土、微量元素地球化学特征及其环境意义[J]. 地质学报,2015,89(11):2036-2045.

Shen Lijian, Liu Chenglin, Wang Licheng. Geochemical characteristics of rare earths and trace elements, of the upper Yunlong Formation in Lanping Basin, Yunnan and its environments significance[J]. Acta Geologica Sinica, 2015, 89(11): 2036-2045.
[49] Wright J, Schrader H, Holser W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 631-644.
[50] 朱筱敏,刘芬,朱世发,等. 鄂尔多斯盆地陇东地区延长组物源区构造属性研究[J]. 高校地质学报,2015,21(3):416-425.

Zhu Xiaomin, Liu Fen, Zhu Shifa, et al. On the tectonic property of the provenance area of the Upper Triassic Yanchang Formation in Longdong area, Ordos Basin[J]. Geological Journal of China Universities, 2015, 21(3): 416-425.
[51] 刘宁,樊德华,郝运轻,等. 稀土元素分析方法研究及应用:以渤海湾盆地东营凹陷永安地区物源分析为例[J]. 石油实验地质,2009,31(4):427-432.

Liu Ning, Fan Dehua, Hao Yunqing, et al. Ree analysis method and application-taking source rocks in Yongan region of the Dongying Sag, the Bohai Bay Basin as example[J]. Petroleum Geology & Experiment, 2009, 31(4): 427-432.
[52] 贾存富. 沾化凹陷孤岛潜山油气地质特征[D]. 青岛:中国海洋大学,2007.

Jia Cunfu. Study on petroliferous characteristic of Gudao buried-hill in Zhanhua Depression[D]. Qingdao: Ocean University of China, 2007.
[53] 季哲. 东营凹陷太古界基岩储层成因研究[D]. 成都:西南石油大学,2015.

Ji Zhe. Study on the origin of Archaean bedrock reservoir in Dongying Depression[D]. Chengdu: Southwest Petroleum University, 2015.
[54] 梁裳恣. 东营凹陷陈家庄凸起西段基岩风化壳储层分布特征研究[D]. 北京:中国石油大学(北京),2020.

Liang Shangzi. Study on the distribution characteristics of base rock weathered crust reservoir in the west belt of Chenjiazhuang uplift in Dongying Depression[D]. Beijing: China University of Petroleum (Beijing), 2020.
[55] 孟凡超,邱隆伟,刘魁元,等. 济阳坳陷埕东凸起基底岩石组合、原岩恢复及地质意义[J]. 地质科学,2013,48(3):707-720.

Meng Fanchao, Qiu Longwei, Liu Kuiyuan, et al. Rock association, protolith restoration of basement rocks in Chengdong salient, Jiyang Depression and its geological significance[J]. Chinese Journal of Geology, 2013, 48(3): 707-720.
[56] Zhao G C, Wilde S A, Cawood P A, et al. Thermal evolution of Archean basement rocks from the eastern part of the North China craton and its bearing on tectonic setting[J]. International Geology Review, 1998, 40(8): 706-721.
[57] Zhao G C, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution[J]. Precambrian Research, 2001, 107(1/2): 45-73.
[58] Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202.
[59] Zhao G C, Cawood P A, Li S Z, et al. Amalgamation of the North China Craton: Key issues and discussion[J]. Precambrian Research, 2012, 222-223: 55-76.
[60] Zhao G C, Zhai M G. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications[J]. Gondwana Research, 2013, 23(4): 1207-1240.
[61] Peng P, Wang X P, Windley B F, et al. Spatial distribution of ~1 950-1 800 Ma metamorphic events in the North China Craton: Implications for tectonic subdivision of the craton[J]. Lithos, 2014, 202-203: 250-266.
[62] Wan Y S, Ma M Z, Dong C Y, et al. Widespread Late Neoarchean reworking of Meso-to Paleoarchean continental crust in the Anshan-Benxi area, North China Craton, as documented by U-Pb-Nd-Hf-O isotopes[J]. American Journal of Science, 2015, 315(7): 620-670.
[63] Zhai M G, Zhu X Y, Zhou Y Y, et al. Continental crustal evolution and synchronous metallogeny through time in the North China Craton[J]. Journal of Asian Earth Sciences, 2020, 194: 104169.
[64] 赵国春. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论[J]. 岩石学报,2009,25(8):1772-1792.

Zhao Guochun. Metamorphic evolution of major tectonic units in the basement of the North China Craton: Key issues and discussion[J]. Acta Petrologica Sinica, 2009, 25(8): 1772-1792.
[65] 魏春景,关晓,董杰. 基性岩高温—超高温变质作用与TTG质岩成因[J]. 岩石学报,2017,33(5):1381-1404.

Wei Chunjing, Guan Xiao, Dong Jie. HT-UHT metamorphism of metabasites and the petrogenesis of TTGs[J]. Acta Petrologica Sinica, 2017, 33(5): 1381-1404.
[66] 翟明国. 华北克拉通构造演化[J]. 地质力学学报,2019,25(5):722-745.

Zhai Mingguo. Tectonic evolution of the North China Craton[J]. Journal of Geomechanics, 2019, 25(5): 722-745.
[67] 刘强虎. 渤海湾盆地沙垒田凸起古近系“源—渠—汇”系统耦合研究[D]. 北京:中国石油大学(北京),2016.

Liu Qianghu. “Source-to-Sink” system coupling analysis of the Paleogene, Shaleitian uplift, Bohai Bay Basin, China[D]. Beijing: China University of Petroleum (Beijing), 2016.
[68] 徐建强,李忠,石永红. 鲁西隆起侏罗系碎屑主物源来自华北北缘:锆石U-Pb和Hf同位素年代学证据[J]. 地质科学,2012,47(4):1099-1115.

Xu Jianqiang, Li Zhong, Shi Yonghong. Major provenance of Jurassic sediments in Luxi uplift, eastern North China, derived from the northern North China Block: Evidences from detrital zircon U-Pb and Hf isotopic geochronology[J]. Chinese Journal of Geology, 2012, 47(4): 1099-1115.
[69] 张航川,徐亚军,杜远生,等. 北京周口店太平山南坡晚古生代碎屑锆石U-Pb年代学及其大地构造意义[J]. 地球科学,2018,43(6):2100-2115.

Zhang Hangchuan, Xu Yajun, Du Yuansheng, et al. Detrital zircon geochronology of Late Paleozoic strata from southern hillside of Taiping hill in Zhoukoudian area, Beijing and their tectonic implications[J]. Earth Science, 2018, 43(6): 2100-2115.
[70] 张拴宏,赵越,刘健,等. 华北地块北缘晚古生代—中生代花岗岩体侵位深度及其构造意义[J]. 岩石学报,2007,23(3):625-638.

Zhang Shuanhong, Zhao Yue, Liu Jian, et al. Emplacement depths of the Late Paleozoic-Mesozoic granitoid intrusions from the northern North China Block and their tectonic implications[J]. Acta Petrologica Sinica, 2007, 23(3): 625-638.
[71] Shi Y R, Liu D Y, Miao L C, et al. Devonian A-type granitic magmatism on the northern margin of the North China Craton: SHRIMP U-Pb zircon dating and Hf-isotopes of the Hongshan granite at Chifeng, Inner Mongolia, China[J]. Gondwana Research, 2010, 17(4): 632-641.
[72] 朱日祥,陈凌,吴福元,等. 华北克拉通破坏的时间、范围与机制[J]. 中国科学(D辑):地球科学,2011,41(5):583-592.

Zhu Rixiang, Chen Ling, Wu Fuyuan, et al. Timing, scale and mechanism of the destruction of the North China Craton[J]. Science China (Seri. D): Earth Sciences, 2011, 41(5): 583-592.
[73] 叶涛,牛成民,王德英,等. 渤海西南海域中生代构造演化、动力学机制及其对华北克拉通破坏的启示[J/OL]. 地学前缘. https://doi.org/10.13745/j.esf.sf.2021.9.22.

Ye Tao, Niu Chengmin, Wang Deying, et al. Mesozoic tectonic evolution and its dynamic mechanism of the southwest of offshore Bohai Bay Basin: Implications for the destruction of North China Craton[J/OL]. Earth Science Frontiers. https://doi.org/0.13745/j.esf.sf.2021.9.22.
[74] Zhang Z M, Dong X, Santosh M, et al. Metamorphism and tectonic evolution of the Lhasa terrane, central Tibet[J]. Gondwana Research, 2014, 25(1): 170-189.
[75] 董树文,张岳桥,李海龙,等. “燕山运动”与东亚大陆晚中生代多板块汇聚构造:纪念“燕山运动”90周年[J]. 中国科学(D辑):地球科学,2019,49(6):913-938.

Dong Shuwen, Zhang Yueqiao, Li Hailong, et al. The Yanshan orogeny and Late Mesozoic multi-plate convergence in East Asia: Commemorating 90th years of the “Yanshan Orogeny”[J]. Science China (Seri. D): Earth Sciences, 2019, 49(6): 913-938.