[1] James N P. Facies models 7. Introduction to carbonate facies models[J]. Geoscience Canada, 1977, 4(3): 123-125.
[2] Schlager W. Sedimentation rates and growth potential of tropical, cool-water and mud-mound carbonate systems[J]. Geological Society, London, Special Publications, 2000, 178(1): 217-227.
[3] Schlager W. Benthic carbonate factories of the Phanerozoic[J]. International Journal of Earth Sciences, 2003, 92(4): 445-464.
[4] Pomar L. Types of carbonate platforms: A genetic approach[J]. Basin Research, 2001, 13(3): 313-334.
[5] Pomar L. Ecological control of sedimentary accommodation: Evolution from a carbonate ramp to rimmed shelf, Upper Miocene, Balearic Islands[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 175(1/2/3/4): 249-272.
[6] Pomar L, Hallock P. Carbonate factories: A conundrum in sedimentary geology[J]. Earth-Science Reviews, 2008, 87(3/4): 134-169.
[7] Pomar L, Haq B U. Decoding depositional sequences in carbonate systems: Concepts vs experience[J]. Global and Planetary Change, 2016, 146: 190-225.
[8] Della Porta G, Kenter J A M, Bahamonde J R, et al. Microbial boundstone dominated carbonate slope (Upper Carboniferous, N Spain): Microfacies, lithofacies distribution and stratal geometry[J]. Facies, 2003, 49(1): 175-207.
[9] Della Porta G, Kenter J A M, Bahamonde J R. Depositional facies and stratal geometry of an Upper Carboniferous prograding and aggrading high‐relief carbonate platform (Cantabrian Mountains, N Spain)[J]. Sedimentology, 2004, 51(2): 267-295.
[10] Michel J, Laugié M, Pohl A, et al. Marine carbonate factories: A global model of carbonate platform distribution[J]. International Journal of Earth Sciences, 2019, 108(6): 1773-1792.
[11] Michel J, Lanteaume C, Lettéron A, et al. Oligocene and Miocene global spatial trends of shallow-marine carbonate architecture[J]. The Journal of Geology, 2020, 128(6): 563-570.
[12] Mutti M, Hallock P. Carbonate systems along nutrient and temperature gradients: Some sedimentological and geochemical constraints[J]. International Journal of Earth Sciences, 2003, 92(4): 465-475.
[13] Grammer G M, Crescini C M, McNeill D F, et al. Quantifying rates of syndepositional marine cementation in deeper platform environments-new insight into a fundamental process[J]. Journal of Sedimentary Research, 1999, 69(1): 202-207.
[14] Sultana D, Burgess P, Bosence D. How do carbonate factories influence carbonate platform morphology? Exploring production-transport interactions with numerical forward modelling[J]. Sedimentology, 2022, 69(1): 372-393.
[15] Chen Z Q, Tu C Y, Pei Y, et al. Biosedimentological features of major microbe-metazoan transitions (MMTs) from Precambrian to Cenozoic[J]. Earth-Science Reviews, 2019, 189: 21-50.
[16] Li M T, Song H J, Woods A D, et al. Facies and evolution of the carbonate factory during the Permian–Triassic crisis in south Tibet, China[J]. Sedimentology, 2019, 66(7): 3008-3028.
[17] Li F, Gong Q L, Burne R V, et al. Ooid factories operating under hothouse conditions in the earliest Triassic of South China[J]. Global and Planetary Change, 2019, 172: 336-354.
[18] Meng Q, Xue W Q, Chen F Y, et al. Stratigraphy of the Guadalupian (Permian) siliceous deposits from central Guizhou of South China: Regional correlations with implications for carbonate productivity during the Middle Permian biocrisis[J]. Earth-Science Reviews, 2022, 228: 104011.
[19] Jin X, Gianolla P, Shi Z Q, et al. Synchronized changes in shallow water carbonate production during the Carnian Pluvial Episode (Late Triassic) throughout tethys[J]. Global and Planetary Change, 2020, 184: 103035.
[20] Reijmer J J G. Carbonate factories[M]//Harff J, Meschede M, Petersen S, et al. Encyclopedia of marine geosciences. Dordrecht: Springer, 2016: 80-84.
[21] Reijmer J J G. Marine carbonate factories: Review and update[J]. Sedimentology, 2021, 68(5): 1729-1796.
[22] Lowenstam H A, Weiner S. On biomineralization[M]. New York: Oxford University Press, 1989.
[23] Schlager W. Carbonate sedimentology and sequence stratigraphy[M]. Tulsa, Okla: SEPM Society for Sedimentary Geology, 2005.
[24] 李飞,易楚恒,李红,等. 微生物成因鲕粒研究进展[J]. 沉积学报,2022,40(2):319-334.

Li Fei, Yi Chuheng, Li Hong, et al. Recent advances in ooid microbial origin: A review[J]. Acta Sedimentologica Sinica, 2022, 40(2): 319-334.
[25] Diaz M R, Eberli G P. Decoding the mechanism of formation in marine ooids: A review[J]. Earth-Science Reviews, 2019, 190: 536-556.
[26] Brandano M, Mateu‐Vicens G, Baceta J I. Understanding carbonate factories through palaeoecological and sedimentological signals – Tribute to Luis Pomar[J]. Sedimentology, 2022, 69(1): 5-23.
[27] Walker R G. Turbidites and submarine fans[M]//Walker R G, James N P. Facies models: Response to sea level change. St. John's: Geological Association of Canada, 1992: 239-263.
[28] Irwin M L. General theory of epeiric clear water sedimentation[J]. AAPG Bulletin, 1965, 49(4): 445-459.
[29] Wilson J L. Principles of carbonate sedimentation[M]//Wilson J L. Carbonate facies in geologic history. New York: Springer, 1975: 1-19.
[30] Flügel E. Mikrofazielle untersuchungen in der alpinen trias: Methoden und probleme[J]. Mitt Ges Geol Bergbaustud, 1972, 21: 9-64.
[31] Flügel E. Microfacies analysis of limestones[M]. Christenson K, trans. Berlin: Springer-Verlag, 1982: 1-26.
[32] Flügel E. Microfacies of carbonate rocks : Analysis, interpretation and application[M]. Berlin: Springer, 2004: 1-976.
[33] Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. 2nd ed. Berlin: Springer, 2010: 1-956.
[34] 金振奎,石良,高白水,等. 碳酸盐岩沉积相及相模式[J]. 沉积学报,2013,31(6):965-979.

Jin Zhenkui, Shi Liang, Gao Baishui, et al. Carbonate facies and facies models[J]. Acta Sedimentologica Sinica, 2013, 31(6): 965-979.
[35] 颜佳新,孟琦,王夏,等. 碳酸盐工厂与浅水碳酸盐岩台地:研究进展与展望[J]. 古地理学报,2019,21(2):232-253.

Yan Jiaxin, Meng Qi, Wang Xia, et al. Carbonate factory and carbonate platform: Progress and prospects[J]. Journal of Palaeogeography, 2019, 21(2): 232-253.
[36] 古强,邢凤存,文娇,等. 碳酸盐工厂研究进展[J/OL]. 沉积学报,doi:  10.14027/j.issn.1000-0550.2022.092.

Gu Qiang, Xing Fengcun, Wen Jiao, et al. Research progress on carbonate factory[J/OL]. Acta Sedimentologica Sinica, doi:  10.14027/j.issn.1000-0550.2022.092.
[37] Lowenstam H A. Minerals formed by organisms[J]. Science, 1981, 211(4487): 1126-1131.
[38] 李红,李飞,龚峤林,等. 混积岩中重矿物形貌学特征及物源意义:以川北寒武系第二统仙女洞组为例[J]. 沉积学报,2021,39(3):525-539.

Li Hong, Li Fei, Gong Qiaolin, et al. Morphological characteristics and provenance significance of heavy minerals in the mixed siliciclastic-carbonate sedimentation: A case study from the Xiannüdong Formation, Cambrian (Series 2), northern Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(3): 525-539.
[39] Ma Z X, Hu S X, Wu H C, et al. High productivity promoted exceptional fossil preservation of the early Middle Triassic Luoping biota of Yunnan province, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 607: 111286.
[40] 樊秋爽,夏国清,李高杰,等. 古海洋氧化还原条件分析方法与研究进展[J]. 沉积学报,2022,40(5):1151-1171.

Fan Qiushuang, Xia Guoqing, Li Gaojie, et al. Analytical methods and research progress of redox conditions in the paleo-ocean[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1151-1171.
[41] 丁奕,张立军. 古海洋氧化还原条件的遗迹化石定量表征特征:以华南二叠纪末生物大灭绝事件为例[J]. 古地理学报,2023,25(2):405-418.

Ding Yi, Zhang Lijun. Quantitative characterization of ichnological parameters for indicating palaeo-ocean redox conditions: A case study of the end-Permian mass extinction in South China[J]. Journal of Palaeogeography (Chinese Edition), 2023, 25(2): 405-418.
[42] Steinhoff I, Strohmenger C. Zechstein 2 carbonate platform subfacies and grain-type distribution (Upper Permian, northwest Germany)[J]. Facies, 1996, 35(1): 105-132.
[43] 朱筱敏,张义娜,杨俊生,等. 准噶尔盆地侏罗系辫状河三角洲沉积特征[J]. 石油与天然气地质,2008,29(2):244-251.

Zhu Xiaomin, Zhang Yina, Yang Junsheng, et al. Sedimentary characteristics of the shallow Jurassic braided river delta, the Junggar Basin[J]. Oil & Gas Geology, 2008, 29(2): 244-251.
[44] 蔡萌. 1.6万年以来泸沽湖沉积中碳酸盐和粒度变化及其环境指示意义[D]. 昆明:云南师范大学,2019:1-61.

Cai Meng. Carbonate mineral and grainsize changes since 16 kyr BP in Lake Lugu and environmental indication[D]. Kunming: Yunnan Normal University, 2019: 1-61.
[45] 杨辉,朱代强,刘祥刚,等. 细粒沉积学研究动态及探讨[J]. 非常规油气,2021,8(1):1-7.

Yang Hui, Zhu Daiqiang, Liu Xianggang, et al. The research and discussion of fine-grained sedimentology[J]. Unconventional Oil & Gas, 2021, 8(1): 1-7.
[46] Smith S V, Kinsey D W. Calcium carbonate production, coral reef growth, and sea level change[J]. Science, 1976, 194(4268): 937-939.
[47] Marfil R, Caja M A, Tsige M, et al. Carbonate-cemented stylolites and fractures in the Upper Jurassic limestones of the eastern Iberian Range, Spain: A record of palaeofluids composition and thermal history[J]. Sedimentary Geology, 2005, 178(3/4): 237-257.
[48] 杨威,魏国齐,金惠,等. 川东北飞仙关组鲕滩储层成岩作用和孔隙演化[J]. 中国地质,2007,34(5):822-828.

Yang Wei, Wei Guoqi, Jin Hui, et al. Diagenesis and pore evolution of the oolitic shoal reservoir in the Feixianguan Formation in northeastern Sichuan[J]. Geology in China, 2007, 34(5): 822-828.
[49] Gontharet S, Pierre C, Blanc-Valleron M M, et al. Nature and origin of diagenetic carbonate crusts and concretions from mud volcanoes and pockmarks of the Nile deep-sea fan (eastern Mediterranean Sea)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(11/12/13): 1292-1311.
[50] 苏旺,江青春,陈志勇,等. 冷水碳酸盐岩研究现状与展望[J]. 海相油气地质,2017,22(1):1-13.

Su Wang, Jiang Qingchun, Chen Zhiyong, et al. Cool-water carbonates: A review of the current status and prospects[J]. Marine Origin Petroleum Geology, 2017, 22(1): 1-13.
[51] Swart P K. The geochemistry of carbonate diagenesis: The past, present and future[J]. Sedimentology, 2015, 62(5): 1233-1304.
[52] Lau K V, Hardisty D S. Modeling the impacts of diagenesis on carbonate paleoredox proxies[J]. Geochimica et Cosmochimica Acta, 2022, 337: 123-139.
[53] Morabito C, Papazzoni C A, Lehrmann D J, et al. Carbonate factory response through the MECO (Middle Eocene Climate Optimum) event: Insight from the Apulia carbonate platform, Gargano Promontory, Italy[J]. Sedimentary Geology, 2024, 461: 106575.
[54] Bádenas B, Aurell M. Facies models of a shallow-water carbonate ramp based on distribution of non-skeletal grains (Kimmeridgian, Spain)[J]. Facies, 2010, 56(1): 89-110.
[55] 马志鑫,李波,颜佳新,等. 四川广元中二叠统栖霞组似球粒灰岩微相特征及沉积学意义[J]. 沉积学报,2011,29(3):449-457.

Ma Zhixin, Li Bo, Yan Jiaxin, et al. Microfacies of peloidal limestone of Middle Permian Chihsia Formation at Guangyuan, Sichuan province and its sedimentary significance[J]. Acta Sedimentologica Sinica, 2011, 29(3): 449-457.
[56] Ginsburg R N. Environmental relationships of grain size and constituent particles in some South Florida carbonate sediments[J]. AAPG Bulletin, 1956, 40(10): 2384-2427.
[57] Braithwaite C J R. Settling behaviour related to sieve analysis of skeletal sands[J]. Sedimentology, 1973, 20(2): 251-262.
[58] 付坤荣,黄理力,祝怡,等. 塔中地区晚奥陶世碳酸盐台缘与台内沉积差异:定性和定量的碳酸盐岩微相综合分析[J]. 沉积学报,2018,36(1):101-109.

Fu Kunrong, Huang Lili, Zhu Yi, et al. The depositional diversity between platform margin and platform interior on the Late Ordovician carbonate rimmed-platform of Tazhong area: A case study of qualitative and quantitative integrated microfacies analysis[J]. Acta Sedimentologica Sinica, 2018, 36(1): 101-109.
[59] 郭芪恒. 北京西山寒武系张夏组鲕粒滩沉积模式及成岩演化[D]. 北京:中国石油大学(北京),2020:1-61.

Guo Qiheng. Study on sedimentary environment and diagenetic evolution of the Zhangxia Formation, Cambrian, Western hill of Beijing[D]. Beijing: China University of Petroleum, Beijing, 2020: 1-61.
[60] 柳晶晶,王夏,孟令赞,等. 川西北晚三叠世卡尼期浅水碳酸盐生产工厂构成及其转换过程定量化研究[J]. 沉积学报,2024,42(2):445-465.

Liu Jingjing, Wang Xia, Meng Lingzan, et al. Quantitative study on the composition and evolution of the Late Triassic Carnian shallow-water carbonate factories in northwestern Sichuan[J]. Acta Sedimentologica Sinica,2024,42(2):445-465.
[61] de Kruijf M, Slootman A, de Boer R A, et al. On the settling of marine carbonate grains: Review and challenges[J]. Earth-Science Reviews, 2021, 217: 103532.
[62] Ge Y Z, Lokier S W, Hoffmann R, et al. Composite micrite envelopes in the lagoon of Abu Dhabi and their application for the recognition of ancient firm- to hardgrounds[J]. Marine Geology, 2020, 423: 105141.
[63] Ge Y Z, Pederson C L, Lokier S W, et al. Late Holocene to recent aragonite‐cemented transgressive lag deposits in the Abu Dhabi lagoon and intertidal sabkha[J]. Sedimentology, 2020, 67(5): 2426-2454.
[64] Shinn E A. Submarine lithification of Holocene carbonate sediments in the persian gulf[J]. Sedimentology, 1969, 12(1/2): 109-144.
[65] Paul A, Lokier S W. Holocene marine hardground formation in the Arabian Gulf: Shoreline stabilisation, sea level and early diagenesis in the coastal sabkha of Abu Dhabi[J]. Sedimentary Geology, 2017, 352: 1-13.
[66] Zhong Y S, Lokier S W, Pederson C L, et al. Carbonate sediment dynamics in the Abu Dhabi lagoon - implications for low-angle inner-to-middle ramp models[J]. Marine Geology, 2023, 465: 107172.
[67] Ge Y. Extensive early marine seafloor cementation in a modern epeiric sea induced by seawater properties and a shallow redox boundary below the seafloor[J]. Geochemistry, Geophysics, Geosystems, 2022, 23(8): e2022GC010444.
[68] 常晓琳,黄元耕,陈中强,等. 沉积地层中草莓状黄铁矿分析方法及其在古海洋学上的应用[J]. 沉积学报,2020,38(1):150-165.

Chang Xiaolin, Huang Yuangeng, Chen Zhongqiang, et al. The microscopic analysis of pyrite framboids and application in paleo-oceanography[J]. Acta Sedimentologica Sinica, 2020, 38(1): 150-165.
[69] Bond D P G, Wignall P B. Pyrite framboid study of marine Permian–Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction[J]. Geological Society of America Bulletin, 2010, 122(7/8): 1265-1279.
[70] Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912.
[71] Halfar J, Godinez-Orta L, Mutti M, et al. Nutrient and temperature controls on modern carbonate production: An example from the gulf of California, Mexico[J]. Geology, 2004, 32(3): 213-216.
[72] Li H, Li F, Li X, et al. Development and collapse of the Early Cambrian shallow-water carbonate factories in the Hannan-Micangshan area, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 583: 110665.
[73] Swart P K. Global synchronous changes in the carbon isotopic composition of carbonate sediments unrelated to changes in the global carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(37): 13741-13745.
[74] Brigaud B, Vincent B, Carpentier C, et al. Growth and demise of the Jurassic carbonate platform in the intracratonic Paris Basin (France): Interplay of climate change, eustasy and tectonics[J]. Marine and Petroleum Geology, 2014, 53: 3-29.
[75] Franceschi M, Corso J D, Cobianchi M, et al. Tethyan carbonate platform transformations during the Early Jurassic (Sinemurian–Pliensbachian, southern Alps): Comparison with the Late Triassic Carnian pluvial episode[J]. GSA Bulletin, 2019, 131(7/8): 1255-1275.
[76] Ahm A S C, Bjerrum C J, Blättler C L, et al. Quantifying early marine diagenesis in shallow-water carbonate sediments[J]. Geochimica et Cosmochimica Acta, 2018, 236: 140-159.
[77] Blättler C L, Miller N R, Higgins J A. Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments[J]. Earth and Planetary Science Letters, 2015, 419: 32-42.
[78] Fantle M S, Higgins J. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: Implications for the geochemical cycles of Ca and Mg[J]. Geochimica et Cosmochimica Acta, 2014, 142: 458-481.
[79] Higgins J A, Blättler C L, Lundstrom E A, et al. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments[J]. Geochimica et Cosmochimica Acta, 2018, 220: 512-534.
[80] Sun Y D, Joachimski M M, Wignall P B, et al. Lethally hot temperatures during the Early Triassic greenhouse[J]. Science, 2012, 338(6105): 366-370.
[81] Chen B, Joachimski M M, Wang X D, et al. Ice volume and paleoclimate history of the Late Paleozoic Ice Age from conodont apatite oxygen isotopes from Naqing (Guizhou, China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 151-161.
[82] Yao L, Jiang G Q, Mii H S, et al. Global cooling initiated the Middle-Late Mississippian biodiversity crisis[J]. Global and Planetary Change, 2022, 215: 103852.
[83] Bernasconi S M, Schmid T W, Grauel A L, et al. Clumped-isotope geochemistry of carbonates: A new tool for the reconstruction of temperature and oxygen isotope composition of seawater[J]. Applied Geochemistry, 2011, 26: S279-S280.
[84] Eiler J M. “Clumped-isotope” geochemistry: The study of naturally-occurring, multiply-substituted isotopologues[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 309-327.
[85] Goldberg S L, Present T M, Finnegan S, et al. A high-resolution record of Early Paleozoic climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(6): e2013083118.
[86] Bajnai D, Guo W F, Spötl C, et al. Dual clumped isotope thermometry resolves kinetic biases in carbonate formation temperatures[J]. Nature Communications, 2020, 11(1): 4005.
[87] Fiebig J, Bajnai D, Löffler N, et al. Combined high-precision ∆48 and ∆47 analysis of carbonates[J]. Chemical Geology, 2019, 522: 186-191.
[88] Swart P K, Lu C J, Moore E W, et al. A calibration equation between Δ48 values of carbonate and temperature[J]. Rapid Communications in Mass Spectrometry, 2021, 35(17): e9147.
[89] Fernandez A, Korte C, Ullmann C V, et al. Reconstructing the magnitude of Early Toarcian (Jurassic) warming using the reordered clumped isotope compositions of belemnites[J]. Geochimica et Cosmochimica Acta, 2021, 293: 308-327.
[90] Riding R, Liang L Y. Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secular trends during the Phanerozoic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(1/2): 101-115.
[91] Wang J Y, Tarhan L G, Jacobson A D, et al. The evolution of the marine carbonate factory[J]. Nature, 2023, 615(7951): 265-269.
[92] Fantle M S, Barnes B D, Lau K V. The role of diagenesis in shaping the geochemistry of the marine carbonate record[J]. Annual Review of Earth and Planetary Sciences, 2020, 48(1): 549-583.
[93] Pederson C L, Ge Y Z, Lokier S W, et al. Seawater chemistry of a modern subtropical ‘epeiric’ sea: Spatial variability and effects of organic decomposition[J]. Geochimica et Cosmochimica Acta, 2021, 314: 159-177.
[94] Amour F, Mutti M, Christ N, et al. Outcrop analog for an oolitic carbonate ramp reservoir: A scale-dependent geologic modeling approach based on stratigraphic hierarchy[J]. AAPG Bulletin, 2013, 97(5): 845-871.
[95] 段太忠,王光付,廉培庆,等. 油气藏定量地质建模方法与应用[M]. 北京:石油工业出版社,2019:156-202.

Duan Taizhong, Wang Guangfu, Lian Peiqing, et al. Quantitative geological modeling of oil and gas reservoirs and its application[M]. Beijing: Petroleum Industry Press, 2019: 156-202.
[96] Hosford Scheirer A, Liu K Y, Liu J L, et al. Integrating forward stratigraphic modeling with basin and petroleum system modeling[M]//Rotzien J R, Yeilding C A, Sears R A, et al. Deepwater sedimentary systems: Science, discovery and applications. Amsterdam: Elsevier, 2022: 625-672.
[97] Tella T O, Winterleitner G, Morsilli M, et al. Testing sea-level and carbonate production effects on stratal architecture of a distally steepened carbonate ramp (Upper Miocene, Menorca): A 3D forward modelling approach[J]. Sedimentary Geology, 2022, 441: 106267.
[98] Al-Salmi M, John C M, Hawie N. Quantitative controls on the regional geometries and heterogeneities of the rayda to Shu’aiba formations (northern Oman) using forward stratigraphic modelling[J]. Marine and Petroleum Geology, 2019, 99: 45-60.
[99] Li X W, Falivene O, Minzoni M, et al. Interactions between sediment production and transport in the geometry of carbonate platforms: Insights from forward modeling of the Great Bank of Guizhou (Early to Middle Triassic), South China[J]. Marine and Petroleum Geology, 2020, 118: 104416.
[100] van der Looven T, Winterleitner G, Betzler C, et al. A biotic perspective on the Oligo-Miocene evolution of the Maldives carbonate platform from forward stratigraphic modelling (Indian Ocean)[J]. Marine and Petroleum Geology, 2022, 145: 105907.
[101] Liu J L, Liu K Y, Salles T, et al. Factors controlling carbonate slope failures: Insight from stratigraphic forward modelling[J]. Earth-Science Reviews, 2022, 232: 104108.
[102] Barrett S J, Webster J M. Holocene evolution of the Great Barrier Reef: Insights from 3D numerical modelling[J]. Sedimentary Geology, 2012, 265-266: 56-71.
[103] Burgess P M, Pollitt D A. The origins of shallow-water carbonate lithofacies thickness distributions: One‐dimensional forward modelling of relative sea‐level and production rate control[J]. Sedimentology, 2012, 59(1): 57-80.
[104] 刘建良,刘可禹. 碳酸盐岩地层完整性分析及其影响因素定量评价:来自地层正演模拟的启示[J]. 中国科学(D辑):地球科学,2021,51(1):150-158.

Liu Jianliang, Liu Keyu. Estimating stratal completeness of carbonate deposition via process-based stratigraphic forward modeling[J]. Science China (Seri. D): Earth Sciences, 2021, 51(1): 150-158.
[105] 黄渊,段太忠,樊太亮,等. 塔河地区寒武纪碳酸盐岩台地沉积演化史与成因机制:来自地层沉积正演模拟的启示[J]. 石油学报,2022,43(5):617-636.

Huang Yuan, Duan Taizhong, Fan Tailiang, et al. Depositional evolution history and formation mechanism of Cambrian carbonate platforms in Tahe area: Insights from stratigraphic forward modelling[J]. Acta Petrolei Sinica, 2022, 43(5): 617-636.
[106] Haq B U. Cretaceous eustasy revisited[J]. Global and Planetary Change, 2014, 113: 44-58.
[107] Miller K G, Kominz M A, Browning J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1293-1298.
[108] Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235(4793): 1156-1167.
[109] Miller K G, Browning J V, Schmelz W J, et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records[J]. Science Advances, 2020, 6(20): eaaz1346.
[110] Haq B U, Schutter S R. A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68.
[111] Schlager W, Marsal D, van der Geest P A G, et al. Sedimentation rates, observation span, and the problem of spurious correlation[J]. Mathematical Geology, 1998, 30(5): 547-556.
[112] Bosscher H, Schlager W. Computer simulation of reef growth[J]. Sedimentology, 1992, 39(3): 503-512.
[113] Montaggioni L F. History of Indo-Pacific coral reef systems since the last glaciation: Development patterns and controlling factors[J]. Earth-Science Reviews, 2005, 71(1/2): 1-75.
[114] Vecsei A. Fore-reef carbonate production: Development of a regional census-based method and first estimates[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 175(1/2/3/4): 185-200.
[115] Craig H. The measurement of oxygen isotope paleotemperatures[J]. Stable isotopes in oceanographic studies and paleotemperatures: Consiglio Nazionale delle Richerche, 1965: 161-182.
[116] Warrlich G M D, Waltham D A, Bosence D W J. Quantifying the sequence stratigraphy and drowning mechanisms of atolls using a new 3-D forward stratigraphic modelling program (CARBONATE 3D)[J]. Basin Research, 2002, 14(3): 379-400.
[117] Liu J L, Liu K Y, Li C W, et al. Tectono-sedimentary evolution of the Late Ediacaran to Early Cambrian trough in central Sichuan Basin, China: New insights from 3D stratigraphic forward modelling[J]. Precambrian Research, 2020, 350: 105826.
[118] Enos P. Sedimentary parameters for computer modeling[J]. Bulletin (Kansas Geological Survey), 1991(233): 63-99.
[119] Bosscher H, Schlager W. Accumulation rates of carbonate platforms[J]. The Journal of Geology, 1993, 101(3): 345-355.
[120] Seard C, Borgomano J, Granjeon D, et al. Impact of environmental parameters on coral reef development and drowning: Forward modelling of the last deglacial reefs from Tahiti (French Polynesia; IODP expedition #310)[J]. Sedimentology, 2013, 60(6): 1357-1388.
[121] Sadler P M. Sediment accumulation rates and the completeness of stratigraphic sections[J]. The Journal of Geology, 1981, 89(5): 569-584.
[122] Bosence D, Waltham D. Computer modeling the internal architecture of carbonate platforms[J]. Geology, 1990, 18(1): 26-30.
[123] Cantrell D L, Griffiths C M, Hughes G W. New tools and approaches in carbonate reservoir quality prediction: A case history from the Shu’aiba Formation, Saudi Arabia[J]. Geological Society, London, Special Publications, 2015, 406(1): 401-425.
[124] Hawie N, Barrois A, Marfisi E, et al. Forward stratigraphic modelling, deterministic approach to improve carbonate heterogeneity prediction; Lower Cretaceous, Abu Dhabi[C]//Abu Dhabi international petroleum exhibition and conference. Abu Dhabi, UAE: SPE, 2015: D041S077R005.
[125] Houghton J T. The physics of atmospheres[M]. 2nd ed. Cambridge: Cambridge University Press, 1986.
[126] Chalker B E. Simulating light-saturation curves for photosynthesis and calcification by reef-building corals[J]. Marine Biology, 1981, 63(2): 135-141.
[127] Chalker B E, Barnes D J, Dunlap W C, et al. Light and reef-building corals[J]. Interdisciplinary Science Reviews, 1988, 13(3): 222-237.
[128] McLaughlin C J, Smith C A, Buddemeier R W, et al. Rivers, runoff, and reefs[J]. Global and Planetary Change, 2003, 39(1/2): 191-199.
[129] Granjeon D, Joseph P. Concepts and applications of A 3-D multiple lithology, diffusive model in stratigraphic modeling[M]//Harbaugh J W, Watney W L, Rankey E C, et al. Numerical experiments in stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations. Tulsa: SEPM Society for Sedimentary Geology, 1999: 197-210.
[130] Tella T O, Winterleitner G, Mutti M. Investigating the role of differential biotic production on carbonate geometries through stratigraphic forward modelling and sensitivity analysis: The Llucmajor example[J]. Petroleum Geoscience, 2022, 28(2): petgeo2021-053.
[131] Lanteaume C, Fournier F, Pellerin M, et al. Testing geologic assumptions and scenarios in carbonate exploration: Insights from integrated stratigraphic, diagenetic, and seismic forward modeling[J]. The Leading Edge, 2018, 37(9): 672-680.
[132] Betzler C, Eberli G P, Lüdmann T, et al. Refinement of Miocene sea level and monsoon events from the sedimentary archive of the Maldives (Indian Ocean)[J]. Progress in Earth and Planetary Science, 2018, 5(1): 5.
[133] Merriam D F, Davis J C. Geologic modeling and simulation: Sedimentary systems[M]. New York: Kluwer Academic/Plenum, 2001.
[134] Burgess P M. A brief review of developments in stratigraphic forward modelling, 2000-2009[M]//Roberts D G, Bally A W. Regional geology and tectonics: Principles of geologic analysis. Amsterdam: Elsevier, 2012: 378-404.
[135] Huang X, Griffiths C M, Liu J. Recent development in stratigraphic forward modelling and its application in petroleum exploration[J]. Australian Journal of Earth Sciences, 2015, 62(8): 903-919.
[136] Pitman W C. Relationship between eustacy and stratigraphic sequences of passive margins[J]. GSA Bulletin, 1978, 89(9): 1389-1403.
[137] Sloss L L. Stratigraphic models in exploration[J]. AAPG Bulletin, 1962, 46(7): 1050-1057.
[138] Harbaugh J W, Bonham-Carter G. Computer simulation in geology[M]. New York: Wiley-Interscience, 1970.