[1] Zavala C. The new knowledge is written on sedimentary rocks:A comment on Shanmugam's paper "the hyperpycnite problem"[J]. Journal of Palaeogeography, 2019, 8(1): 23.
[2] Schuch F N, Meiburg E, Silvestrini J H. Plunging criterion for particle-laden flows over sloping bottoms: Three-dimensional turbulence-resolving simulations[J]. Computers & Geosciences, 2021, 156: 104880.
[3] Lamb M P, Myrow P M, Lukens C, et al. Deposits from wave-influenced turbidity currents: Pennsylvanian Minturn Formation, Colorado, U.S.A.[J]. Journal of Sedimentary Research, 2008, 78(7): 480-498.
[4] Zavala C,潘树新. 异重流成因和异重岩沉积特征[J]. 岩性油气藏,2018,30(1):1-18.

Zavala C, Pan Shuxin. Hyperpycnal flows and hyperpycnites: Origin and distinctive characteristics[J]. Lithologic Reservoirs, 2018, 30(1): 1-18.
[5] Bhattacharya J P, MacEachern J A. Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America[J]. Journal of Sedimentary Research, 2009, 79(4): 184-209.
[6] Dou L X, Best J, Bao Z D, et al. The sedimentary architecture of hyperpycnites produced by transient turbulent flows in a shallow lacustrine environment[J]. Sedimentary Geology, 2021, 411: 105804.
[7] Yan D Z, Xu H M, Xu Z H, et al. Sedimentary architecture of hyperpycnal flow deposits: Cretaceous Sangyuan outcrop, from the Luanping Basin, North East China[J]. Marine and Petroleum Geology, 2020, 121: 104593.
[8] Melstrom E M, Birgenheier L P. Stratigraphic architecture of climate influenced hyperpycnal mouth bars[J]. Sedimentology, 2021, 68(4): 1580-1605.
[9] Palópolo E E, Brezina S S, Casadio S, et al. A new zoroasterid asteroid from the Eocene of Seymour Island, Antarctica[J]. Acta Palaeontologica Polonica, 2021, 66(2): 301-318.
[10] García-García F, Rodríuez-Tovar F J, Poyatos-Moré M, et al. Sedimentological and ichnological signatures of an offshore-transitional hyperpycnal system (Upper Miocene, Betic Cordillera, southern Spain)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 561: 110039.
[11] Yang T, Cao Y C, Liu K Y, et al. Gravity-flow deposits caused by different initiation processes in a deep-lake system[J]. AAPG Bulletin, 2020, 104(7): 1463-1499.
[12] Talling P J. On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings[J]. Marine Geology, 2014, 352: 155-182.
[13] Bell H S. Some evidence regarding the kind and quantity of sediment transported by density-currents[J]. Eos, Transactions American Geophysical Union, 1942, 23(1): 67-73.
[14] Zavala C, Ponce J J, Arcuri M, et al. Ancient lacustrine hyperpycnites: A depositional model from a case study in the Rayoso Formation (Cretaceous) of west-central Argentina[J]. Journal of Sedimentary Research, 2006, 76(1): 41-59.
[15] Soyinka O A, Slatt R M. Identification and micro-stratigraphy of hyperpycnites and turbidites in Cretaceous Lewis Shale, Wyoming[J]. Sedimentology, 2008, 55(5): 1117-1133.
[16] Zhou L H, Sun Z H, Tang G, et al. Pliocene hyperpycnal flow and its sedimentary pattern in D block of Rakhine Basin in bay of Bengal[J]. Petroleum Exploration and Development, 2020, 47(2): 318-330.
[17] 杨仁超,金之钧,孙冬胜,等. 鄂尔多斯晚三叠世湖盆异重流沉积新发现[J]. 沉积学报,2015,33(1):10-20.

Yang Renchao, Jin Zhijun, Sun Dongsheng, et al. Discovery of hyperpycnal flow deposits in the Late Triassic lacustrine Ordos Basin[J]. Acta Sedimentologica Sinica, 2015, 33(1): 10-20.
[18] 杨仁超,尹伟,樊爱萍,等. 鄂尔多斯盆地南部三叠系延长组湖相重力流沉积细粒岩及其油气地质意义[J]. 古地理学报,2017,19(5):791-806.

Yang Renchao, Yin Wei, Fan Aiping, et al. Fine-grained, lacustrine gravity-flow deposits and their hydrocarbon significance in the Triassic Yanchang Formation in southern Ordos Basin[J]. Journal of Palaeogeography, 2017, 19(5): 791-806.
[19] 谈明轩,朱筱敏,朱世发. 异重流沉积过程和沉积特征研究[J]. 高校地质学报,2015,21(1):94-104.

Tan Mingxuan, Zhu Xiaomin, Zhu Shifa. Research on sedimentary process and characteristics of hyperpycnal flows[J]. Geological Journal of China Universities, 2015, 21(1): 94-104.
[20] Shanmugam G. The hyperpycnite problem[J]. Journal of Palaeogeography, 2018, 7(1): 1-42.
[21] Forel F A. Les ravins sous-lacustres des fleuves glaciaires[M]. Paris:Gauthier-Villars, 1885.
[22] Kuenen P H, Migliorini C I. Turbidity currents as a cause of graded bedding[J]. The Journal of Geology, 1950, 58(2): 91-127.
[23] Lowe D R. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research, 1982, 52(1): 279-297.
[24] Wright L D, Wiseman W J, Bornhold B D, et al. Marine dispersal and deposition of Yellow River silts by gravity-driven underflows[J]. Nature, 1988, 332(6165): 629-632.
[25] Bates C C. Rational theory of delta formation[J]. AAPG Bulletin, 1953, 37(9): 2119-2162.
[26] Mulder T, Chapron E. Flood deposits in continental and marine environments: Character and significance[M]//Slatt R M,Zavala C. Sediment transfer from shelf to deep water-Revisiting the delivery system. Tulsa: AAPG, 2011: 1-30.
[27] Yang T, Cao Y C, Wang Y Z. A new discovery of the Early Cretaceous supercritical hyperpycnal flow deposits on Lingshan Island, East China[J]. Acta Geologica Sinica (English Edition), 2017, 91(2): 749-750.
[28] Mulder T, Migeon S, Savoye B, et al. Twentieth century floods recorded in the deep Mediterranean sediments[J]. Geology, 2001, 29(11): 1011-1014.
[29] Khripounoff A, Vangriesheim A, Crassous P, et al. High frequency of sediment gravity flow events in the Var submarine canyon (Mediterranean Sea) [J]. Marine Geology, 2009, 263(1/2/3/4): 1-6.
[30] Alexander J, Mulder T. Experimental quasi-steady density currents[J]. Marine Geology, 2002, 186(3/4): 195-210.
[31] Jin L N, Shan X, Shi X F, et al. Hybrid event beds generated by erosional bulking of modern hyperpycnal flows on the Choshui River delta front, Taiwan Strait[J]. Sedimentology, 2021, 68(6): 2500-2522.
[32] Liu J P, Xian B Z, Tan X F, et al. Depositional process and dispersal pattern of a faulted margin hyperpycnal system: The Eocene Dongying Depression, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2022, 135: 105405.
[33] Mulder T, Syvitski J P M. Turbidity currents generated at river mouths during exceptional discharges to the world oceans[J]. The Journal of Geology, 1995, 103(3): 285-299.
[34] Mulder T, Migeon S, Savoye B, et al. Inversely graded turbidite sequences in the deep Mediterranean: A record of deposits from flood-generated turbidity currents? [J]. Geo-Marine Letters, 2001, 21(2): 86-93.
[35] Mulder T, Syvitski J P M, Migeon S, et al. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review[J]. Marine and Petroleum Geology, 2003, 20(6/8): 861-882.
[36] Zavala C, Arcuri M. Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics[J]. Sedimentary Geology, 2016, 337: 36-54.
[37] 何起祥. 沉积动力学若干问题的讨论[J]. 海洋地质与第四纪地质,2010,30(4):1-10.

He Qixiang. A discussion on sediment dynamics[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 1-10.
[38] Yang R C, Jin Z J, van Loon A J, et al. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: Implications for unconventional petroleum development[J]. AAPG Bulletin, 2017, 101(1): 95-117.
[39] 潘树新,刘化清, Zavala C,等. 大型坳陷湖盆异重流成因的水道—湖底扇系统:以松辽盆地白垩系嫩江组一段为例[J]. 石油勘探与开发,2017,44(6):860-870.

Pan Shuxin, Liu Huaqing, Zavala C, et al. Sublacustrine hyperpycnal channel-fan system in a large depression basin: A case study of Nen 1 member, Cretaceous Nenjiang Formation in the Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2017, 44(6): 860-870.
[40] Feng Z Q, Zhang S, Cross T A, et al. Lacustrine turbidite channels and fans in the Mesozoic Songliao Basin, China[J]. Basin Research, 2010, 22(1): 96-107.
[41] Weimer P, Slatt R M, Bouroullec R, et al. Introduction to the petroleumgeology of deepwater setting[M]. New York: AAPG, 2006.
[42] 栾国强,董春梅,林承焰,等. 异重流发育条件、演化过程及沉积特征[J]. 石油与天然气地质,2018,39(3):438-453.

Luan Guoqiang, Dong Chunmei, Lin Chengyan, et al. Development conditions, evolution process and depositional features of hyperpycnal flow[J]. Oil & Gas Geology, 2018, 39(3): 438-453.
[43] Milliman J D, Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers[J]. The Journal of Geology, 1992, 100(5): 525-544.
[44] Parsons J D, Bush J W M, Syvitski J P M. Hyperpycnal plume formation from riverine outflows with small sediment concentrations[J]. Sedimentology, 2001, 48(2): 465-478.
[45] 陈雁雁,林承焰,马存飞,等. 博兴洼陷大芦湖油田沙三段中亚段二砂组异重流沉积特征[J]. 油气地质与采收率,2019,26(4):33-42.

Chen Yanyan, Lin Chengyan, Ma Cunfei, et al. Sedimentary characteristics of hyperpycnal flows in the 2nd sand group of middle Es3 member in Daluhu oilfield, Boxing subsag[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(4): 33-42.
[46] 孙福宁,杨仁超,李冬月. 异重流沉积研究进展[J]. 沉积学报,2016,34(3):452-462.

Sun Funing, Yang Renchao, Li Dongyue. Research progresses on hyperpycnal flow deposits[J]. Acta Sedimentologica Sinica, 2016, 34(3): 452-462.
[47] Gihm Y S, Hwang I G. Lacustrine hyperpycnal flow deposits after explosive volcanic eruptions, Cretaceous Beolkeum member, Wido Island, Korea[J]. Geosciences Journal, 2016, 20(2): 157-166.
[48] Girard F, Ghienne J F, Rubino J L. Occurrence of hyperpycnal flows and hybrid event beds related to glacial outburst events in a Late Ordovician Proglacial delta (Murzuq Basin, SW Libya)[J]. Journal of Sedimentary Research, 2012, 82(9): 688-708.
[49] Ryazantsev P, Rodionov A, Subetto D. Waterborne GPR mapping of stratigraphic boundaries and turbidite sediments beneath the bottom of Lake Polevskoye, Karelia, NW Russia[J]. Journal of Paleolimnology, 2021, 66(3): 261-277.
[50] Zavala C. Hyperpycnal (over density) flows and deposits[J]. Journal of Palaeogeography, 2020, 9(1): 1-21.
[51] Mulder T, Hüneke H, van Loon A J. Progress in deep-sea sedimentology[J]. Developments in Sedimentology, 2011, 63: 1-24.
[52] Stevenson C J, Peakall J. Effects of topography on lofting gravity flows: Implications for the deposition of deep-water massive sands[J]. Marine and Petroleum Geology, 2010, 27(7): 1366-1378.
[53] Liu J Y, Zhu R, Zhang C M, et al. Hyperpycnal flow depositional characteristics and model in an ancient continental basin: A record from the Oligocene Lower Huagang Formation in the Xihu Sag, East China Sea Shelf Basin[J]. Canadian Journal of Earth Sciences, 2021, 58(2): 122-133.
[54] Mutti E, Bernoulli D, Lucchi F R, et al. Turbidites and turbidity currents from Alpine 'flysch' to the exploration of continental margins[J]. Sedimentology, 2009, 56(1): 267-318.
[55] Petter A L, Steel R J. Hyperpycnal flow variability and slope organization on an Eocene shelf margin, Central Basin, Spitsbergen[J]. AAPG Bulletin, 2006, 90(10): 1451-1472.
[56] Plink-Björklund P, Steel R J. Initiation of turbidity currents: Outcrop evidence for Eocene hyperpycnal flow turbidites[J]. Sedimentary Geology, 2004, 165(1/2): 29-52.
[57] Warrick J A, Xu J P, Noble M A, et al. Rapid formation of hyperpycnal sediment gravity currents offshore of a semi-arid California River[J]. Continental Shelf Research, 2008, 28(8): 991-1009.
[58] Evangelinos D, Nelson C H, Escutia C, et al. Late Quaternary climatic control of Lake Baikal (Russia) turbidite systems: Implications for turbidite systems worldwide[J]. Geology, 2017, 45(2): 179-182.
[59] 周立宏,孙志华,汤戈,等. 孟加拉湾若开盆地D区块上新统异重流特征与沉积模式[J]. 石油勘探与开发,2020,47(2):297-308.

Zhou Lihong, Sun Zhihua, Tang Ge, et al .Pliocene hyperpycnal flow and its sedimentary pattern in D block of Rakhine Basin in bay of Bengal[J]. Petroleum Exploration and Development, 2020, 47(2) : 297-308.
[60] Casalbore D, Biancone M, Casas D, et al. Holocene morpho-stratigraphic evolution of a compound submarine deltaic system in front of the shelf-incising Almanzora and Garrucha Canyons (Palomares margin, southeastern Iberia)[J]. Marine Geology, 2022, 444: 106708.
[61] Pattison S J, Ainsworth R B, Hoffman T A. Evidence of across‐shelf transport of fine‐grained sediments: Turbidite‐filled shelf channels in the Campanian Aberdeen member, Book Cliffs, Utah, USA[J]. Sedimentology, 2007, 54(5): 1033-1064.
[62] Mutti E, Tinterri R, Benevelli G, et al. Deltaic, mixed and turbidite sedimentation of ancient foreland basins[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 733-755.
[63] Lamb M P, Mohrig D. Do hyperpycnal-flow deposits record river-flood dynamics?[J]. Geology, 2009, 37(12): 1067-1070.
[64] Akiyama J, Stefan H G. Plunging flow into a reservoir: Theory[J]. Journal of Hydraulic Engineering, 1984, 110(4): 484-499.
[65] Beattie P D, Dade W B. Is scaling in turbidite deposition consistent with forcing by earthquakes?[J]. Journal of Sedimentary Research, 1996, 66(5): 909-915.
[66] Yang R C, Fan A P, van Loon A J, et al. The influence of hyperpycnal flows on the salinity of deep-marine environments, and implications for the interpretation of marine facies[J]. Marine and Petroleum Geology, 2018, 98: 1-11.
[67] 杨田,操应长,王艳忠,等. 异重流沉积动力学过程及沉积特征[J]. 地质论评,2015,61(1):23-33.

Yang Tian, Cao Yingchang, Wang Yanzhong, et al. Sediment dynamics process and sedimentary characteristics of hyperpycnal flows[J]. Geological Review, 2015, 61(1): 23-33.
[68] 龚承林,齐昆,徐杰,等. 深水源—汇系统对多尺度气候变化的过程响应与反馈机制[J]. 沉积学报,2021,39(1):231-252.

Gong Chenglin, Qi Kun, Xu Jie, et al. Process-product linkages and feedback mechanisms of deepwater source-to-sink responses to multi-scale climate changes[J]. Acta Sedimentologica Sinica, 2021, 39(1): 231-252.
[69] van der Zwan C J. The impact of Milankovitch-scale climatic forcing on sediment supply[J]. Sedimentary Geology, 2002, 147(3/4): 271-294.
[70] Chen L Q, Steel R J, Guo F S, et al. Alluvial fan facies of the Yongchong Basin: Implications for tectonic and paleoclimatic changes during Late Cretaceous in SE China[J]. Journal of Asian Earth Sciences, 2017, 134: 37-54.
[71] Wu H C, Fang Q, Wang X D, et al. An ~34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan realm[J]. Geology, 2019, 47(1): 83-86.
[72] 杨仁超,田源. 天文周期与异重流沉积前沿科学问题探讨[J]. 非常规油气,2020,7(5):1-7.

Yang Renchao, Tian Yuan. Discussion on the scientific issues in frontiers of astronomical cycles and hyperpycnal flow deposits[J]. Unconventional Oil & Gas, 2020, 7(5): 1-7.
[73] Noorbergen L J, Abels H A, Hilgen F J, et al. Conceptual models for short-eccentricity-scale climate control on peat formation in a Lower Palaeocene fluvial system, northeastern Montana (USA)[J]. Sedimentology, 2018, 65(3): 775-808.
[74] Schilman B, Almogi-Labin A, Bar-Matthews M, et al. Long- and short-term carbon fluctuations in the eastern Mediterranean during the Late Holocene[J]. Geology, 2001, 29(12): 1099-1102.
[75] Li Y, Yang R C. Astronomical calibration of a ten-million-year Triassic lacustrine record in the Ordos Basin, North China[J]. Sedimentology, 2023, 70(2): 407-433.
[76] Friedrichs C T, Scully M E. Modeling deposition by wave-supported gravity flows on the Po River prodelta: From seasonal floods to prograding clinoforms[J]. Continental Shelf Research, 2007, 27(3/4): 322-337.
[77] Johnson K S, Paull C K, Barry J P, et al. A decadal record of underflows from a coastal river into the deep sea[J]. Geology, 2001, 29(11): 1019-1022.
[78] Wright L D, Yang Z S, Bornhold B D, et al. Hyperpycnal plumes and plume fronts over the Huanghe (Yellow River) Delta front[J]. Geo-Marine Letters, 1986, 6(2): 97-105.
[79] Wang H J, Bi N S, Saito Y, et al. Recent changes in sediment delivery by the Huanghe (Yellow River) to the sea: Causes and environmental implications in its estuary[J]. Journal of Hydrology, 2010, 391(3/4): 302-313.
[80] Marr J G, Harff P A, Shanmugam G, et al. Experiments on subaqueous sandy gravity flows: The role of clay and water content in flow dynamics and depositional structures[J]. GSA Bulletin, 2001, 113(11): 1377-1386.
[81] Khan S M, Imran J, Bradford S, et al. Numerical modeling of hyperpycnal plume[J]. Marine Geology, 2005, 222-223: 193-211.
[82] Olariu C, Steel R, Petter A L. Delta-front hyperpycnal bed geometry and implications for reservoir modeling: Cretaceous Panther Tongue delta, Book Cliffs, Utah[J]. AAPG Bulletin, 2010, 94(6): 819-845.
[83] Surlyk F, Bruhn R. Flood-generated hyperpycnal delta front sands of the Brora Arenaceous Formation (Upper Callovian-Middle Oxfordian) of the Inner Moray Firth, Scotland, record the onset of rifting[J]. Scottish Journal of Geology, 2020, 56(2): 159-174.
[84] Mutti E, Davoli G, TinterriI R, et al. 1996. The Importance of Ancient Fluvio-deltaic Systems Dominated by Catastrophic Flooding in Tectonically Active Basins [M]. Memorie di Scienze Geologiche, Universita di Padova, 1-153.
[85] Mulder T, Migeon S, Savoye B, et al. Reply to discussion by Shanmugam on Mulderet al. (2001, Geo-Marine Letters 21: 86-93) Inversely graded turbidite sequences in the deep Mediterranean. A record of deposits from flood-generated turbidity currents?[J]. Geo-Marine Letters, 2002, 22(2): 112-120.
[86] Nakajima T. Hyperpycnites deposited 700 km away from river mouths in the central Japan Sea[J]. Journal of Sedimentary Research, 2006, 76(1): 60-73.
[87] 唐武,王英民,仲米虹,等. 异重流研究进展综述[J]. 海相油气地质,2016,21(2):47-56.

Tang Wu, Wang Yingmin, Zhong Mihong, et al. Review of hyperpycnal flow[J]. Marine Origin Petroleum Geology, 2016, 21(2): 47-56.
[88] Felix M, Peakall J, McCaffrey W D. Relative importance of processes that govern the generation of particulate hyperpycnal flows[J]. Journal of Sedimentary Research, 2006, 76(2): 382-387.
[89] Baas J H. Conditions for formation of massive turbiditic sandstones by primary depositional processes[J]. Sedimentary Geology, 2004, 166(3/4): 293-310.
[90] Jopling A V, Walker R G. Morphology and origin of ripple-drift cross-lamination, with examples from the Pleistocene of Massachusetts[J]. Journal of Sedimentary Research, 1968, 38(4): 971-984.
[91] Jobe Z R, Lowe D R, Morris W R. Climbing-ripple successions in turbidite systems: Depositional environments, sedimentation rates and accumulation times[J]. Sedimentology, 2012, 59(3): 867-898.
[92] Sumner E J, Amy L A, Talling P J. Deposit structure and processes of sand deposition from decelerating sediment suspensions[J]. Journal of Sedimentary Research, 2008, 78(8): 529-547.
[93] Hollister C D, McCave I N. Sedimentation under deep-sea storms[J]. Nature, 1984, 309(5965): 220-225.
[94] Yoshida M, Yoshiuchi Y, Hoyanagi K. Occurrence conditions of hyperpycnal flows, and their significance for organic-matter sedimentation in a Holocene estuary, Niigata Plain, central Japan[J]. Island Arc, 2009, 18(2): 320-332.
[95] Plink-Björklund P, Mellere D, Steel R J. Turbidite variability and architecture of sand-prone, deep-water slopes: Eocene clinoforms in the Central Basin, Spitsbergen[J]. Journal of Sedimentary Research, 2001, 71(6): 895-912.
[96] Zavala C, Arcuri M, Valiente L B. The importance of plant remains as diagnostic criteria for the recognition of ancient hyperpycnites[J]. Revue de Paleobiologie, 2012, 11(6): 457-469.
[97] Gao W, Li G X, Wang X D, et al. Sedimentary characteristics of the hyperpycnal flow in the modern Yellow River Delta[J]. Indian Journal of Geo-Marine Sciences, 2014, 43(8): 1438-1448.
[98] Ducassou E, Mulder T, Migeon S, et al. Nile floods recorded in deep Mediterranean sediments[J]. Quaternary Research, 2008, 70(3): 382-391.
[99] Tian X, Gao Y, Li Z Y, et al. Fine-grained gravity flow deposits and their depositional processes: A case study from the Cretaceous Nenjiang Formation, Songliao Basin, NE China[J]. Geological Journal, 2021, 56(3): 1496-1509.