[1] 柯珊,刘盛遨,李王晔,等. 镁同位素地球化学研究新进展及其应用[J]. 岩石学报,2011,27(2):383-397.

Ke Shan, Liu Shengao, Li Wangye, et al. Advances and application in magnesium isotope geochemistry[J]. Acta Petrologica Sinica, 2011, 27(2): 383-397.
[2] Teng F Z. Magnesium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 219-287.
[3] Farkaš J, Chakrabarti R, Jacobsen S B, et al. Ca and Mg isotopes in sedimentary carbonates[M]//Melezhik V A. Reading the archive of earth’s oxygenation - volume 3: Global events and the fennoscandian arctic Russia -drilling early earth project. Heidelberg: Springer, 2013.
[4] 董爱国,朱祥坤. 表生环境中镁同位素的地球化学循环[J]. 地球科学进展,2016,31(1):43-58.

Dong Aiguo, Zhu Xiangkun. Mg isotope geochemical cycle in supergene environment[J]. Advances in Earth Science, 2016, 31(1): 43-58.
[5] von Strandmann P A E P, Burton K W, Opfergelt S, et al. Hydrothermal and cold spring water and primary productivity effects on magnesium isotopes: Lake Myvatn, Iceland[J]. Frontiers in Earth Science, 2020, 8: 109.
[6] Berg R D, Solomon E A, Teng F Z. The role of marine sediment diagenesis in the modern oceanic magnesium cycle[J]. Nature Communications, 2019, 10(1): 4371.
[7] 方子遥. 碳酸盐岩铬同位素反演古环境氧化还原程度的机制探究与实际应用[D]. 合肥:中国科学技术大学,2020.

Fang Ziyao. Mechanism and application of chromium isotopes in carbonates as a paleo-redox proxy[D]. Hefei: University of Science and Technology of China, 2020.
[8] Mavromatis V, Meister P, Oelkers E H. Using stable Mg isotopes to distinguish dolomite Formation mechanisms: A case study from the Peru Margin[J]. Chemical Geology, 2014, 385: 84-91.
[9] Xing C C, Ning M, Huang T Z, et al. Testing micrite as an ancient seawater Mg isotopic composition archive: A case study of Upper Paleozoic carbonate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567: 110278.
[10] 赵彦彦,郑永飞. 碳酸盐沉积物的成岩作用[J]. 岩石学报,2011,27(2):501-519.

Zhao Yanyan, Zheng Yongfei. Diagenesis of carbonate sediments[J]. Acta Petrologica Sinica, 2011, 27(2): 501-519.
[11] Derry L A. On the significance of δ13C correlations in ancient sediments[J]. Earth and Planetary Science Letters, 2010, 296(3/4): 497-501.
[12] Armstrong-Altrin J S, Lee Y I, Verma S P, et al. Carbon, oxygen, and strontium isotope geochemistry of carbonate rocks of the Upper Miocene Kudankulam Formation, southern India: Implications for paleoenvironment and diagenesis[J]. Geochemistry, 2009, 69(1): 45-60.
[13] Knauth L P, Kennedy M J. The Late Precambrian greening of the Earth[J]. Nature, 2009, 460(7256): 728-732.
[14] Rott C M, Qing H. Early dolomitization and recrystallization in shallow marine carbonates, Mississippian Alida Beds, Williston Basin(Canada): Evidence from petrography and isotope geochemistry[J]. Journal of Sedimentary Research, 2013, 83(11): 928-941.
[15] Fantle M S, Higgins J. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: Implications for the geochemical cycles of Ca and Mg[J]. Geochimica et Cosmochimica Acta, 2014, 142: 458-481.
[16] Higgins J A, Schrag D P. Constraining magnesium cycling in marine sediments using magnesium isotopes[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5039-5053.
[17] Galy A, Bar-Matthews M, Halicz L, et al. Mg isotopic composition of carbonate: Insight from speleothem Formation[J]. Earth and Planetary Science Letters, 2002, 201(1): 105-115.
[18] Ra K, Kitagawa H, Shiraiwa Y. Mg isotopes in chlorophyll-a and coccoliths of cultured coccolithophores (Emiliania huxleyi) by MC-ICP-MS[J]. Marine Chemistry, 2010, 122(1/2/3/4): 130-137.
[19] Yoshimura T, Tanimizu M, Inoue M, et al. Mg isotope fractionation in biogenic carbonates of deep-sea coral, benthic foraminifera, and hermatypic coral[J]. Analytical and Bioanalytical Chemistry, 2011, 401(9): 2755-2769.
[20] Saenger C, Wang Z R. Magnesium isotope fractionation in biogenic and abiogenic carbonates: Implications for paleoenvironmental proxies[J]. Quaternary Science Reviews, 2014, 90: 1-21.
[21] He R, Ning M, Huang K J, et al. Mg isotopic systematics during early diagenetic aragonite-calcite transition: Insights from the Key Largo Limestone[J]. Chemical Geology, 2020, 558: 119876.
[22] Young E D, Ash R D, Galy A, et al. Mg isotope heterogeneity in the Allende meteorite measured by UV laser ablation-MC-ICPMS and comparisons with O isotopes[J]. Geochimica et Cosmochimica Acta, 2002, 66(4): 683-698.
[23] de Villiers S, Dickson J A D, Ellam R M. The composition of the continental river weathering flux deduced from seawater Mg isotopes[J]. Chemical Geology, 2005, 216(1/2): 133-142.
[24] Buhl D, Immenhauser A, Smeulders G, et al. Time series δ26Mg analysis in speleothem calcite: Kinetic versus equilibrium fractionation, comparison with other proxies and implications for palaeoclimate research[J]. Chemical Geology, 2007, 244(3/4): 715-729.
[25] Immenhauser A, Buhl D, Richter D, et al. Magnesium-isotope fractionation during low-Mg calcite precipitation in a limestone cave - Field study and experiments[J]. Geochimica et Cosmochimica Acta, 2010, 74(15): 4346-4364.
[26] Higgins J A, Schrag D P. Records of Neogene seawater chemistry and diagenesis in deep-sea carbonate sediments and pore fluids[J]. Earth and Planetary Science Letters, 2012, 357-358: 386-396.
[27] Huang K J, Shen B, Lang X G, et al. Magnesium isotopic compositions of the Mesoproterozoic dolostones: Implications for Mg isotopic systematics of marine carbonates[J]. Geochimica et Cosmochimica Acta, 2015, 164: 333-351.
[28] Peng Y, Shen B, Lang X G, et al. Constraining dolomitization by Mg isotopes: A case study from partially dolomitized limestones of the Middle Cambrian Xuzhuang Formation, North China[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(3): 1109-1129.
[29] Tipper E T, Galy A, Bickle M J. Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: Implications for the oceanic Ca cycle[J]. Earth and Planetary Science Letters, 2006, 247(3/4): 267-279.
[30] Tipper E T, Galy A, Gaillardet J, et al. The Mg isotope budget of the modern ocean: Constraints from riverine Mg isotope ratios[J]. Geochimica et Cosmochimica Acta, 2006, 70(Suppl.18): A652.
[31] Chang V T C, Makishima A, Belshaw N S, et al. Purification of Mg from low-Mg biogenic carbonates for isotope ratio determination using multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2003, 18(4): 296-301.
[32] von Strandmann P A E P. Precise magnesium isotope measurements in core top planktic and benthic foraminifera[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(12): Q12015.
[33] Wombacher F, Eisenhauer A, Böhm F, et al. Magnesium stable isotope fractionation in marine biogenic calcite and aragonite[J]. Geochimica et Cosmochimica Acta, 2011, 75(19): 5797-5818.
[34] Hippler D, Buhl D, Witbaard R, et al. Towards a better understanding of magnesium-isotope ratios from marine skeletal carbonates[J]. Geochimica et Cosmochimica Acta, 2009, 73(20): 6134-6146.
[35] Ra K, Kitagawa H, Shiraiwa Y. Mg isotopes and Mg/Ca values of coccoliths from cultured specimens of the species Emiliania huxleyi and Gephyrocapsa oceanica[J]. Marine Micropaleontology, 2010, 77(3/4): 119-124.
[36] Müller M N, Kısakürek B, Buhl D, et al. Response of the coccolithophores Emiliania huxleyi and Coccolithus braarudii to changing seawater Mg2+ and Ca2+ concentrations: Mg/Ca, Sr/Ca ratios and δ44/40Ca, δ26/24Mg of coccolith calcite[J]. Geochimica et Cosmochimica Acta, 2011, 75(8): 2088-2102.
[37] Planchon F, Poulain C, Langlet D, et al. Mg-isotopic fractionation in the manila clam (Ruditapes philippinarum): New insights into Mg incorporation pathway and calcification process of bivalves[J]. Geochimica et Cosmochimica Acta, 2013, 121: 374-397.
[38] Riechelmann S, Buhl D, Schröder-Ritzrau A, et al. The magnesium isotope record of cave carbonate archives[J]. Climate of the Past, 2012, 8(6): 1849-1867.
[39] Brenot A, Cloquet C, Vigier N, et al. Magnesium isotope systematics of the lithologically varied Moselle river Basin, France[J]. Geochimica et Cosmochimica Acta, 2008, 72(20): 5070-5089.
[40] Wombacher F, Eisenhauer A, Heuser A, et al. Separation of Mg, Ca and Fe from geological reference materials for stable isotope ratio analyses by MC-ICP-MS and double-spike TIMS[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(5): 627-636.
[41] Azmy K, Lavoie D, Wang Z R, et al. Magnesium-isotope and REE compositions of Lower Ordovician carbonates from eastern Laurentia: Implications for the origin of dolomites and limestones[J]. Chemical Geology, 2013, 356: 64-75.
[42] Kasemann S A, von Strandmann P A E P, Prave A R, et al. Continental weathering following a Cryogenian glaciation: Evidence from calcium and magnesium isotopes[J]. Earth and Planetary Science Letters, 2014, 396: 66-77.
[43] Higgins J A, Schrag D P. The Mg isotopic composition of Cenozoic seawater-evidence for a link between Mg-clays, seawater Mg/Ca, and climate[J]. Earth and Planetary Science Letters, 2015, 416: 73-81.
[44] Jacobson A D, Zhang Z F, Lundstrom C, et al. Behavior of Mg isotopes during dedolomitization in the Madison Aquifer, South Dakota[J]. Earth and Planetary Science Letters, 2010, 297(3/4): 446-452.
[45] Gao T, Ke S, Teng F Z, et al. Magnesium isotope fractionation during dolostone weathering[J]. Chemical Geology, 2016, 445: 14-23.
[46] Chanda P, Fantle M S. Quantifying the effect of diagenetic recrystallization on the Mg isotopic composition of marine carbonates[J]. Geochimica et Cosmochimica Acta, 2017, 204: 219-239.
[47] 王小敏,胡忠亚,李伟强. 东地中海黎凡特盆地白垩纪阿尔布期白云岩成因研究[J]. 高校地质学报,2018,24(5):681-691.

Wang Xiaomin, Hu Zhongya, Li Weiqiang. Genesis of the Albian dolomite in Levant Basin, East Mediterranean: A case study of the givat Ye’arim Formation and Soreq Formation near Jerusalem, Israel[J]. Geological Journal of China Universities, 2018, 24(5): 681-691.
[48] Li W Q, Bialik O M, Wang X M, et al. Effects of early diagenesis on Mg isotopes in dolomite: The roles of Mn(IV)-reduction and recrystallization[J]. Geochimica et Cosmochimica Acta, 2019, 250: 1-17.
[49] Ning M, Lang X G, Huang K J, et al. Towards understanding the origin of massive dolostones[J]. Earth and Planetary Science Letters, 2020, 545: 116403.
[50] Pokrovsky B G, Mavromatis V, Pokrovsky O S. Co-variation of Mg and C isotopes in Late Precambrian carbonates of the Siberian Platform: A new tool for tracing the change in weathering regime?[J]. Chemical Geology, 2011, 290(1/2): 67-74.
[51] Liu C, Wang Z R, Raub T D, et al. Neoproterozoic cap-dolostone deposition in stratified glacial meltwater plume[J]. Earth and Planetary Science Letters, 2014, 404: 22-32.
[52] Geske A, Goldstein R H, Mavromatis V, et al. The magnesium isotope (δ26Mg) signature of dolomites[J]. Geochimica et Cosmochimica Acta, 2015, 149: 131-151.
[53] Li F B, Teng F Z, Chen J T, et al. Constraining ribbon rock dolomitization by Mg isotopes: Implications for the ‘dolomite problem’[J]. Chemical Geology, 2016, 445: 208-220.
[54] Lavoie D, Jackson S, Girard I. Magnesium isotopes in high-temperature saddle dolomite cements in the Lower Paleozoic of Canada[J]. Sedimentary Geology, 2014, 305: 58-68.
[55] 王坤,胡素云,刘伟,等. 塔里木盆地古城地区上寒武统热液改造型储层形成机制与分布预测[J]. 天然气地球科学,2017,28(6):939-951.

Wang Kun, Hu Suyun, Liu Wei, et al. The formation mechanism and distribution prediction of the hydrothermal reformed reservoir of the Upper Cambrian in Gucheng area, Tarim Basin, China[J]. Natural Gas Geoscience, 2017, 28(6): 939-951.
[56] 彭军,王雪龙,吴亚骐. Mg同位素在白云石成因分析中的应用[C]//中国矿物岩石地球化学学会第九次全国会员代表大会暨第16届学术年会文集. 西安:中国矿物岩石地球化学学会,2017. [

Peng Jun, Wang Xuelong, Wu Yaqi. Application of Mg isotope in the analysis of dolomite origin[C]//Proceedings of the 16th academic annual conference of Chinese society for mineralogy, petrplogy and geochemistry. Xi’an: China Society of Mineral and Rock Geochemistry, 2017.]
[57] Hu Z Y, Hu W X, Liu C, et al. Conservative behavior of Mg isotopes in massive dolostones: From diagenesis to hydrothermal reworking[J]. Sedimentary Geology, 2019, 381: 65-75.
[58] Geske A, Zorlu J, Richter D K, et al. Impact of diagenesis and low grade metamorphosis on isotope (δ26Mg, δ13C, δ18O and 87Sr/86Sr) and elemental (Ca, Mg, Mn, Fe and Sr) signatures of Triassic sabkha dolomites[J]. Chemical Geology, 2012, 332-333: 45-64.
[59] 钱一雄,武恒志,周凌方,等. 川西中三叠统雷口坡组三段—四段白云岩特征与成因:来自于岩相学及地球化学的约束[J]. 岩石学报,2019,35(4):1161-1180.

Qian Yixiong, Wu Hengzhi, Zhou Lingfang, et al. Characteristic and origin of dolomites in the third and fourth members of Leikoupo Formation of the Middle Triassic in NW Sichuan Basin: Constraints in mineralogical, petrographic and geochemical data[J]. Acta Petrologica Sinica, 2019, 35(4): 1161-1180.
[60] Hu Z Y, Hu W X, Wang X M, et al. Resetting of Mg isotopes between calcite and dolomite during burial metamorphism: Outlook of Mg isotopes as geothermometer and seawater proxy[J]. Geochimica et Cosmochimica Acta, 2017, 208: 24-40.
[61] Bialik O M, Wang X M, Zhao S G, et al. Mg isotope response to dolomitization in hinterland-attached carbonate platforms: Outlook of δ26Mg as a tracer of Basin restriction and seawater Mg/Ca ratio[J]. Geochimica et Cosmochimica Acta, 2018, 235: 189-207.
[62] Blättler C L, Miller N R, Higgins J A. Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments[J]. Earth and Planetary Science Letters, 2015, 419: 32-42.
[63] Geske A, Lokier S, Dietzel M, et al. Magnesium isotope composition of sabkha porewater and related (Sub-)Recent stoichiometric dolomites, Abu Dhabi (UAE)[J]. Chemical Geology, 2015, 393-394: 112-124.
[64] Carder E A, Galy A, McKenzie J A, et al. Magnesium isotopes in bacterial dolomites: A novel approach to the dolomite problem[J]. Geochimica et Cosmochimica Acta, 2005, 69(10): A213.
[65] Carder E A, Galy A, McKenzie J A, et al. Magnesium isotopic evidence for widespread microbial dolomite precipitation in the geological record[C]//San Francisco: American geophysical union, fall meeting2005.[

AGU, 2005.]
[66] Li Q, Li L, Zhang Y Y, et al. Oligocene incursion of the Paratethys seawater to the Junggar Basin, NW China: Insight from multiple isotopic analysis of carbonate[J]. Scientific Reports, 2020, 10(1): 6601.
[67] Higgins J A, Blättler C L, Lundstrom E A, et al. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments[J]. Geochimica et Cosmochimica Acta, 2018, 220: 512-534.
[68] Shalev N, Bontognali T R R, Vance D. Sabkha dolomite as an archive for the magnesium isotope composition of seawater[J]. Geology, 2021, 49(3): 253-257.
[69] Ahm A S C, Maloof A C, Macdonald F A, et al. An early diagenetic deglacial origin for basal Ediacaran “cap dolostones”[J]. Earth and Planetary Science Letters, 2019, 506: 292-307.
[70] Murray S T, Higgins J A, Holmden C, et al. Geochemical fingerprints of dolomitization in Bahamian carbonates: Evidence from sulphur, calcium, magnesium and clumped isotopes[J]. Sedimentology, 2021, 68(1): 1-29.
[71] Liu X M, Teng F Z, Rudnick R L, et al. Massive magnesium depletion and isotope fractionation in weathered basalts[J]. Geochimica et Cosmochimica Acta, 2014, 135: 336-349.
[72] Li W Q, Chakraborty S, Beard B L, et al. Magnesium isotope fractionation during precipitation of inorganic calcite under laboratory conditions[J]. Earth and Planetary Science Letters, 2012, 333-334: 304-316.
[73] Mavromatis V, Gautier Q, Bosc O, et al. Kinetics of Mg partition and Mg stable isotope fractionation during its incorporation in calcite[J]. Geochimica et Cosmochimica Acta, 2013, 114: 188-203.
[74] Saulnier S, Rollion-Bard C, Vigier N, et al. Mg isotope fractionation during calcite precipitation: An experimental study[J]. Geochimica et Cosmochimica Acta, 2012, 91: 75-91.
[75] Teng F Z, Wadhwa M, Helz R T. Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle[J]. Earth and Planetary Science Letters, 2007, 261(1/2): 84-92.
[76] Guo B J, Zhu X K, Dong A G, et al. Mg isotopic systematics and geochemical applications: A critical review[J]. Journal of Asian Earth Sciences, 2019, 176: 368-385.
[77] Rustad J R, Casey W H, Yin Q Z, et al. Isotopic fractionation of Mg2+(aq), Ca2+(aq), and Fe2+(aq) with carbonate minerals[J]. Geochimica et Cosmochimica Acta, 2010, 74(22): 6301-6323.
[78] 甯濛,黄康俊,沈冰. 镁同位素在“白云岩问题”研究中的应用及进展[J]. 岩石学报,2018,34(12):3690-3708.

Ning Meng, Huang Kangjun, Shen Bing. Applications and advances of the magnesium isotope on the 'dolomite problem'[J]. Acta Petrologica Sinica, 2018, 34(12): 3690-3708.
[79] Pinilla C, Blanchard M, Balan E, et al. Equilibrium magnesium isotope fractionation between aqueous Mg2+ and carbonate minerals: Insights from path integral molecular dynamics[J]. Geochimica et Cosmochimica Acta, 2015, 163: 126-139.
[80] Schauble E A. First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2+) crystals[J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 844-869.
[81] Wang W Z, Qin T, Zhou C, et al. Concentration effect on equilibrium fractionation of Mg-Ca isotopes in carbonate minerals: Insights from first-principles calculations[J]. Geochimica et Cosmochimica Acta, 2017, 208: 185-197.
[82] Chen X Y, Teng F Z, Sanchez W R, et al. Experimental constraints on magnesium isotope fractionation during abiogenic calcite precipitation at room temperature[J]. Geochimica et Cosmochimica Acta, 2020, 281: 102-117.
[83] Li W Q, Beard B L, Li C X, et al. Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications[J]. Geochimica et Cosmochimica Acta, 2015, 157: 164-181.
[84] Perez-Fernandez A, Berninger U N, Mavromatis V, et al. Ca and Mg isotope fractionation during the stoichiometric dissolution of dolomite at temperatures from 51 to 126 °C and 5 bars CO2 pressure[J]. Chemical Geology, 2017, 467: 76-88.
[85] Wang Z R, Hu P, Gaetani G, et al. Experimental calibration of Mg isotope fractionation between aragonite and seawater[J]. Geochimica et Cosmochimica Acta, 2013, 102: 113-123.
[86] Pearce C R, Saldi G D, Schott J, et al. Isotopic fractionation during congruent dissolution, precipitation and at equilibrium: Evidence from Mg isotopes[J]. Geochimica et Cosmochimica Acta, 2012, 92: 170-183.
[87] Shirokova L S, Mavromatis V, Bundeleva I A, et al. Using Mg isotopes to trace cyanobacterially mediated magnesium carbonate precipitation in alkaline lakes[J]. Aquatic Geochemistry, 2013, 19(1): 1-24.
[88] Mavromatis V, Immenhauser A, Buhl D, et al. Effect of organic ligands on Mg partitioning and Mg isotope fractionation during low-temperature precipitation of calcite in the absence of growth rate effects[J]. Geochimica et Cosmochimica Acta, 2017, 207: 139-153.
[89] Mavromatis V, Purgstaller B, Dietzel M, et al. Impact of amorphous precursor phases on magnesium isotope signatures of Mg-calcite[J]. Earth and Planetary Science Letters, 2017, 464: 227-236.
[90] Warren J. Dolomite: Occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1/2/3): 1-81.
[91] Tipper E T, Gaillardet J, Louvat P, et al. Mg isotope constraints on soil pore-fluid chemistry: Evidence from Santa Cruz, California[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 3883-3896.
[92] Wimpenny J, Colla C A, Yin Q Z, et al. Investigating the behaviour of Mg isotopes during the Formation of clay minerals[J]. Geochimica et Cosmochimica Acta, 2014, 128: 178-194.
[93] Wimpenny J, Yin Q Z, Tollstrup D, et al. Using Mg isotope ratios to trace Cenozoic weathering changes: A case study from the Chinese Loess Plateau[J]. Chemical Geology, 2014, 376: 31-43.
[94] Machel H G. Concepts and models of dolomitization: A critical reappraisal[J]. Geological Society, London, Special Publications, 2004, 235(1): 7-63.
[95] Fantle M S, DePaolo D J. Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A: The Ca2+(aq)–calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments[J]. Geochimica et Cosmochimica Acta, 2007, 71(10): 2524-2546.
[96] Tang J W, Dietzel M, Böhm F, et al. Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite Formation: II. Ca isotopes[J]. Geochimica et Cosmochimica Acta, 2008, 72(15): 3733-3745.
[97] DePaolo D J. Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 1039-1056.
[98] Nielsen L C, De Yoreo J J, DePaolo D J. General model for calcite growth kinetics in the presence of impurity ions[J]. Geochimica et Cosmochimica Acta, 2013, 115: 100-114.
[99] Ahm A S C, Bjerrum C J, Blättler C L, et al. Quantifying early marine diagenesis in shallow-water carbonate sediments[J]. Geochimica et Cosmochimica Acta, 2018, 236: 140-159.
[100] Rollion-Bard C, Saulnier S, Vigier N, et al. Variability in magnesium, carbon and oxygen isotope compositions of brachiopod shells: Implications for paleoceanographic studies[J]. Chemical Geology, 2016, 432: 49-60.
[101] Riechelmann S, Mavromatis V, Buhl D, et al. Impact of diagenetic alteration on brachiopod shell magnesium isotope (δ26Mg) signatures: Experimental versus field data[J]. Chemical Geology, 2016, 440: 191-206.
[102] von Strandmann P A E P, Forshaw J, Schmidt D N. Modern and Cenozoic records of seawater magnesium from foraminiferal Mg isotopes[J]. Biogeosciences, 2014, 11(18): 5155-5168.
[103] Gothmann A M, Stolarski J, Adkins J F, et al. Fossil corals as an archive of secular variations in seawater chemistry since the Mesozoic[J]. Geochimica et Cosmochimica Acta, 2015, 160: 188-208.
[104] Gothmann A M, Stolarski J, Adkins J F, et al. A Cenozoic record of seawater Mg isotopes in well-preserved fossil corals[J]. Geology, 2017, 45(11): 1039-1042.
[105] Ma H R, Xu Y H, Huang K J, et al. Heterogeneous Mg isotopic composition of the early Carboniferous limestone: Implications for carbonate as a seawater archive[J]. Acta Geochimica, 2018, 37(1): 1-18.
[106] 马英军,霍润科,徐志方,等. 化学风化作用中的稀土元素行为及其影响因素[J]. 地球科学进展,2004,19(1):87-94.

Ma Yingjun, Huo Runke, Xu Zhifang, et al. REE behavior and influence factors during chemical weathering[J]. Advance in Earth Sciences, 2004, 19(1): 87-94.
[107] 刘春莲,杨婷婷,吴洁,等. 珠江三角洲晚第四纪风化层稀土元素地球化学特征[J]. 古地理学报,2012,14(1):125-132.

Liu Chunlian, Yang Tingting, Wu Jie, et al. REE geochemical characteristics of mottled clays of the Late Quaternary in the Pearl River Delta[J]. Journal of Palaeogeography, 2012, 14(1): 125-132.
[108] Petrash D A, Bialik O M, Bontognali T R R, et al. Microbially catalyzed dolomite Formation: From near-surface to burial[J]. Earth-Science Reviews, 2017, 171: 558-582.
[109] Ling M X, Sedaghatpour F, Teng F Z, et al. Homogeneous magnesium isotopic composition of seawater: An excellent geostandard for Mg isotope analysis[J]. Rapid Communications in Mass Spectrometry, 2011, 25(19): 2828-2836.
[110] Aissaoui D M. Magnesian calcite cements and their diagenesis: Dissolution and dolomitization, Mururoa Atoll[J]. Sedimentology, 1988, 35(5): 821-841.
[111] Bischoff W D, Bertram M A, Mackenzie F T, et al. Diagenetic stabilization pathways of magnesian calcites[J]. Carbonates and Evaporites, 1993, 8(1): 82-89.