[1] Walter M R, Buick R, Dunlop J S R. Stromatolites 3,400-3,500 Myr old from the North Pole area, western Australia[J]. Nature, 1980, 284(5755): 443-445.
[2] Walter M R, Heys G R. Links between the rise of the metazoa and the decline of stromatolites[J]. Precambrian Research, 1985, 29(1/2/3): 149-174.
[3] Schieber J, Bose P K, Eriksson P G, et al. Atlas of microbial mat features preserved within the siliciclastic rock record[M]. Amsterdam: Elsevier, 2007: 39-52.
[4] Noffke N. The criteria for the biogeneicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits[J]. Earth-Science Reviews, 2009, 96(3): 173-180.
[5] Muscente A D, Boag T H, Bykova N, et al. Environmental disturbance, resource availability, and biologic turnover at the dawn of animal life[J]. Earth-Science Reviews, 2018, 177: 248-264.
[6] Riding R, Liang L Y. Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secular trends during the Phanerozoic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(1/2): 101-115.
[7] Riding R. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time[J]. Sedimentary Geology, 2006, 185(3/4): 229-238.
[8] Mángano M G, Buatois L A. Trace fossils in evolutionary paleoecology[M]//Miller III W. Trace fossils: Concepts, problems, prospects. Amsterdam: Elsevier, 2007: 391-409.
[9] 齐永安,王敏,李妲,等. 寒武纪底质革命:从微生物席底到生物扰动混合底[J]. 河南理工大学学报(自然科学版),2012,31(2):159-164.

Qi Yong’an, Wang Min, Li Da, et al. Cambrian substrate revolution: From matgrounds to bioturbated mixgrounds[J]. Journal of Henan Polytechnic University (Natural Science), 2012, 31(2): 159-164.
[10] Bottjer D J, Hagadorn J W, Dornbos S Q. The Cambrian substrate revolution[J]. GSA Today, 2000, 10(9): 1-7.
[11] Seilacher A. Biomat-related lifestyles in the Precambrian[J]. Palaios, 1999, 14(1): 86-93.
[12] Walter M R. Stromatolites: The main geological source of information on the evolution of the early benthos[M]//Bengtson S. Early life on earth. New York: Columbia University Press, 1994: 270-286.
[13] Zhang L J, Qi Y A, Buatois L A, et al. The impact of deep-tier burrow systems in sediment mixing and ecosystem engineering in Early Cambrian carbonate settings[J]. Scientific Reports, 2017, 7: 45773.
[14] 常玉光,齐永安,郑伟,等. 中国豫西寒武系馒头组叠层石的沉积特征及其古环境意义[J]. 沉积学报,2013,31(1):10-19.

Chang Yuguang, Qi Yong’an, Zheng Wei, et al. Sedimentary characteristics and palaeoenvironmental significance on stromatolites of Mantou Formation in Cambrian, western Henan, China[J]. Acta Sedimentologica Sinica, 2013, 31(1): 10-19.
[15] 代明月,齐永安,陈尧,等. 豫西渑池地区寒武系第三统张夏组的巨鲕及其成因[J]. 古地理学报,2014,16(5):726-734.

Dai Mingyue, Qi Yong’an, Chen Yao, et al. Giant ooids and their genetic analysis from the Zhangxia Formation of Cambrian Series 3 in Mianchi area, western Henan province[J]. Journal of Palaeogeography, 2014, 16(5): 726-734.
[16] 白万备,齐永安,郭英海,等. 河南鲁山寒武系第二统辛集组风暴沉积及其相关的遗迹化石[J]. 古地理学报,2018,20(3):365-376.

Bai Wanbei, Qi Yong’an, Guo Yinghai, et al. Storm deposits and relevant trace fossils from the Cambrian Series 2 Xinji Formation in Lushan area, Henan province[J]. Journal of Palaeogeography, 2018, 20(3): 365-376.
[17] 齐永安,李小燕,陈白兵,等. 豫西宜阳地区寒武系第三统馒头组二段鲕粒滩—微生物丘组合及其成因分析[J]. 河南理工大学学报(自然科学版),2019,38(2):34-41.

Qi Yong’an, Li Xiaoyan, Chen Baibing, et al. Analysis on the oolitic shoal-microbial mound combinations and their geneses in the Second member of Mantou Formation, Cambrian, Series 3, Yiyang area, western Henan[J]. Journal of Henan Polytechnic University (Natural Science), 2019, 38(2): 34-41.
[18] 梅冥相, Latif K,孟庆芬,等. 寒武系张夏组鲕粒滩中微生物碳酸盐岩主导的生物丘:以河北秦皇岛驻操营剖面为例[J]. 地质学报,2019,93(1):227-251.

Mei Mingxiang, Latif K, Meng Qingfen, et al. Cambrian bioherms dominated by microbial carbonate within the oolitic grainstone bank, Zhangxia Formation of the Miaolingian, Zhucaoying section in Qinhuangdao city of Hebei province[J]. Acta Geologica Sinica, 2019, 93(1): 227-251.
[19] 梅冥相,胡媛,孟庆芬. 大连金州湾寒武系毛庄组微生物碳酸盐岩生物丘复合体[J]. 地质学报,2020,94(2):375-395.

Mei Mingxiang, Hu Yuan, Meng Qingfen. Bioherm complex madding up of microbial carbonates in the Cambrian Maozhuang Formation, Jinzhouwan section in the Dalian city of Liaoning province in northeastern China[J]. Acta Geologica Sinica, 2020, 94(2): 375-395.
[20] 张喜洋,齐永安,代明月,等. 河南登封寒武系第三统张夏组核形石与遗迹化石的耦合变化[J]. 微体古生物学报,2015,32(2):184-193.

Zhang Xiyang, Qi Yong’an, Dai Mingyue, et al. Coupling variation of oncoids and trace fossils in the Zhangxia Formation (Cambrian Series 3), Dengfeng, western Henan province[J]. Acta Micropalaeontologica Sinica, 2015, 32(2): 184-193.
[21] 常玉光,白万备,王敏. 豫西寒武纪叠层石演化特征及其与后生动物的耦合关系[J]. 现代地质,2017,31(1):92-101.

Chang Yuguang, Bai Wanbei, Wang Min. Evolution characteristics of Cambrian stromatolites in western Henan and the coupling relationship with metazoan[J]. Geoscience, 2017, 31(1): 92-101.
[22] 裴放,张海清,阎国顺,等. 河南省地层古生物研究[M]. 郑州:黄河水利出版社,2008:112-153.

Pei Fang, Zhang Haiqing, Yan Guoshun, et al. Stratigraphic paleontology research in Henan province[M]. Zhengzhou: Yellow River Conservancy Press, 2008: 112-153.
[23] 齐永安,王艳鹏,代明月,等. 豫西登封寒武系第三统张夏组凝块石灰岩及其控制因素[J]. 微体古生物学报,2014,31(3):243-255.

Qi Yong’an, Wang Yanpeng, Dai Mingyue, et al. Thrombolites and controlling factors from the Zhangxia Formation of Cambrian Series 3 in Dengfeng, western Henan province[J]. Acta Micropalaeontologica Sinica, 2014, 31(3): 243-255.
[24] Taylor A M. Trace fossil fabric analysis in the sub-surface exploration of Jurassic sequences from the North Sea Basin[D]. Manchester: University of Manchester, 1991: 1-167.
[25] Wang M, Li K N, Yang W T, et al. The trace fossil Thalassinoides bacae in the Cambrian Zhangxia Formation (Miaolingian Series) of North China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 534: 109333.
[26] Buatois L A, Mángano M G. Ediacaran ecosystems and the dawn of animals[M]//Mángano M G, Buatois L A. The trace-fossil record of major evolutionary events: Volume 1: Precambrian and Paleozoic. Dordrecht: Springer, 2016: 27-72.
[27] Mcilroy D, Logan G A. The impact of bioturbation on infaunal ecology and evolution during the Proterozoic-Cambrian transition[J]. Palaios, 1999, 14(1): 58-71.
[28] Mángano M G, Bromley R G, Harper D A, et al. Nonbiomineralized carapaces in Cambrian seafloor landscapes (Sirius Passet, Greenland): Opening a new window into Early Phanerozoic benthic ecology[J]. Geology, 2012, 40(6): 519-522.
[29] 刘炳辰,齐永安,代明月,等. 寒武纪生物大爆发之后的底栖生态系统工程建造者:以河南地区为例[J]. 地球科学,2021,46(1):148-161.

Liu Bingchen, Qi Yong’an, Dai Mingyue, et al. Benthic ecosystem engineer after the Cambrian explosion: An example from Henan province[J]. Earth Science, 2021, 41(1): 148-161.
[30] Chen Z, Zhou C M, Meyer M, et al. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors[J]. Precambrian Research, 2013, 224: 690-701.
[31] Erwin D H, Laflamme M, Tweedt S M, et al. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals[J]. Science, 2011, 334(6059): 1091-1097.
[32] Fan J X, Shen S Z, Erwin D H, et al. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity[J]. Science, 2020, 367(6475): 272-277.