[1] Fielding C R, Frank T D, Birgenheier L P, et al. Stratigraphic imprint of the Late Palaeozoic Ice Age in eastern Australia: A record of alternating glacial and nonglacial climate regime[J]. Journal of the Geological Society, 2008, 165(1): 129-140.
[2] Fielding C R, Frank T D, Birgenheier L P, et al. Stratigraphic record and facies associations of the Late Paleozoic Ice Age in eastern Australia (New South Wales and Queensland)[M]//Fielding C R, Frank T D, Isbell J L. Resolving the Late Paleozoic Ice Age in time and space. Boulder: Geological Society of America, 2008, 441: 41-57.
[3] Fielding C R, Frank T D, Isbell J L. The Late Paleozoic Ice Age-A review of current understanding and synthesis of global climate patterns[M]//Fielding C R, Frank T D, Isbell J L. Resolving the Late Paleozoic Ice Age in time and space. Boulder: Geological Society of America, 2008, 441: 343-354.
[4] Gulbranson E L, Montañez I P, Schmitz M D, et al. High-precision U-Pb calibration of Carboniferous glaciation and climate history, Paganzo Group, NW Argentina[J]. GSA Bulletin, 2010, 122(9/10): 1480-1498.
[5] Montañez I P, Poulsen C J. The Late Paleozoic Ice Age: An evolving paradigm[J]. Annual Review of Earth and Planetary Sciences, 2013, 41: 629-656.
[6] Veevers J J, Powell C M. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica[J]. GSA Bulletin, 1987, 98(4): 475-487.
[7] Isbell J L, Miller M F, Wolfe K L, et al. Timing of Late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of northern hemisphere cyclothems?[M]//Chan M A, Archer A W. Extreme depositional environments: Mega end members in geologic time. Boulder: Geological Society of America, 2003, 370: 5-24.
[8] Korte C, Jasper T, Kozur H W, et al. δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 224(4): 333-351.
[9] Korte C, Jones P J, Brand U, et al. Oxygen isotope values from high-latitudes: Clues for Permian sea-surface temperature gradients and Late Palaeozoic deglaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 269(1/2): 1-16.
[10] Zeng J, Cao C Q, Davydov V I, et al. Carbon isotope chemostratigraphy and implications of palaeoclimatic changes during the Cisuralian (Early Permian) in the southern Urals, Russia[J]. Gondwana Research, 2012, 21(2/3): 601-610.
[11] Montañez I P, Tabor N J, Niemeier D, et al. CO2-forced climate and vegetation instability during Late Paleozoic deglaciation[J]. Science, 2007, 315(5808): 87-91.
[12] Koch J T, Frank T D. The Pennsylvanian-Permian transition in the low-latitude carbonate record and the onset of major Gondwanan glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(3/4): 362-372.
[13] Haig D W, McCartain E, Mory A J, et al. Postglacial Early Permian (late Sakmarian-early Artinskian) shallow-marine carbonate deposition along a 2000km transect from Timor to west Australia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 409: 180-204.
[14] Frank T D, Shultis A I, Fielding C R. Acme and demise of the Late Palaeozoic Ice Age: A view from the southeastern margin of Gondwana[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 418: 176-192.
[15] Wilson J L. Carbonate facies in geologic history[M]. New York: Springer, 1975: 1-471.
[16] Wood R. The ecological evolution of reefs[J]. Annual Review of Ecology and Systematics, 1998, 29: 179-206.
[17] Riding R. Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories[J]. Earth-Science Reviews, 2002, 58(1/2): 163-231.
[18] Wu Y S, Fan J S. Quantitative evaluation of the sea-level drop at the end-Permian: Based on reefs[J]. Acta Geologica Sinica, 2003, 77(1): 95-102.
[19] 吴亚生,范嘉松,姜红霞,等. 二叠纪末生物礁生态系绝灭的方式[J]. 科学通报,2007,52(2):207-214.

Wu Yasheng, Fan Jiasong, Jiang Hongxia, et al. Extinction pattern of reef ecosystems in latest Permian[J]. Chinese Science Bulletin, 2007, 52(2): 207-214.
[20] Flügel E. Pangean shelf carbonates: Controls and paleoclimatic significance of Permian and Triassic reefs[M]//Klein G O. Pangea: Paleoclimate, tectonics, and sedimentation during accretion, zenith, and breakup of a supercontinent. Boulder: Geological Society of America, 1994, 288: 247-266.
[21] 范嘉松,吴亚生. 世界二叠纪生物礁的基本特征及其古地理分布[J]. 古地理学报,2005,7(3):287-304.

Fan Jiasong, Wu Yasheng. Main features of the Permian reefs of world and their palaeogeographic distribution[J]. Journal of Palaeogeography, 2005, 7(3): 287-304.
[22] Kiessling W, Krause M C. PARED - An online database of Phanerozoic reefs[EB/OL]. 2022. https://www.paleo-reefs.pal.uni-erlangen.de.
[23] Stanley S M, Powell M G. Depressed rates of origination and extinction during the Late Paleozoic Ice Age: A new state for the global marine ecosystem[J]. Geology, 2003, 31(10): 877-880.
[24] Shi G R. Possible influence of Gondwanan glaciation on low-latitude carbonate sedimentation and trans-equatorial faunal migration: The Lower Permian of South China[J]. Geosciences Journal, 2001, 5: 57-63.
[25] Wang X D, Wang X J, Zhang F, et al. Diversity patterns of Carboniferous and Permian rugose corals in South China[J]. Geological Journal, 2006, 41(3/4): 329-343.
[26] 冯增昭,杨玉卿,金振奎,等. 中国南方二叠纪岩相古地理[J]. 沉积学报,1996,14(2):3-12.

Feng Zengzhao, Yang Yuqing, Jin Zhenkui, et al. Lithofacies paleogeography of the Permian of South China[J]. Acta Sedimentologica Sinica, 1996, 14(2): 3-12.
[27] 刘宝珺,许效松. 中国南方岩相古地理图集(震旦纪—三叠纪)[M]. 北京:科学出版社,1994:1-188.

Liu Baojun, Xu Xiaosong. Atlas of the lithofacies and palaeogeography of South China (Sinnian-Triassic)[M]. Beijing: Science Press, 1994: 1-188.
[28] 王立亭,陆彦邦,赵时久,等. 中国南方二叠纪岩相古地理与成矿作用[M]. 北京:地质出版社,1994:1-147.

Wang Liting, Lu Yanbang, Zhao Shijiu, et al. Permian lithofacies paleogeography and mineralization in South China[M]. Beijing: Geological Publishing House, 1994: 1-147.
[29] 沈树忠,张华,张以春,等. 中国二叠纪综合地层和时间框架[J]. 中国科学:地球科学,2019,49(1):160-193.

Shen Shuzhong, Zhang Hua, Zhang Yichun, et al. Permian integrative stratigraphy and timescale of China[J]. Science China: Earth Sciences, 2019, 49(1):160-193.
[30] 贵州省地质矿产局. 贵州省区域地质志[M]. 北京:地质出版社,1987:1-698.

Bureau of Geology and Mineral Resources of Guizhou Province. Regional geology of Guizhou province[M]. Beijing: Geological Publishing House, 1987: 1-698.
[31] Buggisch W, Wang X D, Alekseev A S, et al. Carboniferous-Permian carbon isotope stratigraphy of successions from China (Yangtze Platform), USA (Kansas) and Russia (Moscow Basin and Urals)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 301(1/2/3/4): 18-38.
[32] 陈旭,王建华. 广西宜山地区晚石炭世马平组的䗴类[M]. 北京:科学出版社,1983:1-139.

Chen Xu, Wang Jianhua. The fusulinids of the Maping limestone of the Upper Carboniferous from Yishan, Guangxi[M]. Beijing: Science Press, 1983: 1-139.
[33] 史宇坤,杨湘宁,刘家润. 贵州南部宗地地区早石炭世—早二叠世的䗴类[M]. 北京:科学出版社,2012:1-271.

Shi Yukun, Yang Xiangning, Liu Jiarun. Early Carboniferous to Early Permian fusulinids from Zongdi section in southern Guizhou[M]. Beijing: Science Press, 2012: 1-271.
[34] Ross C A. Eoparafusulina from the Neal Ranch Formation (Lower Permian), West Texas[J]. Journal of Paleontology, 1967, 41(4): 943-946.
[35] Skinner J W, Wilde G L. Permian biostratigraphy and fusulinid faunas of the Shasta Lake area, northern California[M]. Lawrence: The University of Kansas, 1965: 1-98.
[36] Yao L, Wang X D, Lin W, et al. Middle Viséan (Mississippian) coral biostrome in central Guizhou, southwestern China and its palaeoclimatological implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 179-194.
[37] Gallagher S J. Controls on the distribution of calcareous foraminifera in the Lower Carboniferous of Ireland[J]. Marine Micropaleontology, 1998, 34(3/4): 187-211.
[38] Diaz M R, Eberli G P. Decoding the mechanism of formation in marine ooids: A review[J]. Earth-Science Reviews, 2019, 190: 536-556.
[39] Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. 2nd ed. Berlin: Springer, 2010: 1-1006.
[40] Gong E P, Yang H Y, Guan C Q, et al. Unique recovery stage of reef communities after F/F event in a huge coral reef of Carboniferous, southern Guizhou, China[J]. Science in China: Earth Sciences, 2004, 47(5): 412-418.
[41] 王向东. 新疆早二叠世阿克苏柯坪珊瑚(Kepingophyllum aksuense Wu et Zhou)的生长型式及环境意义[J]. 科学通报,1992,37(4):353-355.

Wang Xiangdong. Increase pattern and environmental significance of Kepingophyllum aksuense Wu et Zhou from Early Permian, Xinjiang[J]. Chinese Science Bulletin, 1992, 37(4): 353-355.
[42] 张雄华. 黔南、湘中地区早二叠世四射珊瑚生态环境分异研究[J]. 现代地质,1992,6(1):23-29.

Zhang Xionghua. Ecological-environmental differentiation of the Early Permian rugose corals in southern Guizhou and central Hunan[J]. Geoscience, 1992, 6(1): 23-29.
[43] Oertli H J. The Venice System for the classification of marine waters according to salinity[J]. Pubblicazioni della Stazione Zoologioca di Napoli, 1964, 33(Suppl.): 611.
[44] Chappell J. Coral morphology, diversity and reef growth[J]. Nature, 1980, 286(5770): 249-252.
[45] Aretz M, Chevalier E. After the collapse of stromatoporid-coral reefs-the Famennian and Dinantian reefs of Belgium: Much more than Waulsortian mounds[M]//Álvaro J J, Aretz M, Boulvain F, et al. Palaeozoic reefs and bioaccumulations: Climatic and evolutionary controls. London: Geological Society of London, 2007, 275: 163-188.
[46] 巩恩普,黄文韬,关长庆,等. 石炭纪生物礁与晚古生代冰期的耦合关系[J]. 地质学报,2021,95(6):1671-1692.

Gong Enpu, Huang Wentao, Guan Changqing, et al. The coupled relationship between Carboniferous reefs and the Late Paleozoic Ice Age[J]. Acta Geologica Sinica, 2021, 95(6): 1671-1692.
[47] Wood R. Reef evolution[M]. Oxford: Oxford University Press, 1999: 1-414.
[48] Yao L, Aretz M, Chen J T, et al. Global microbial carbonate proliferation after the end-Devonian mass extinction: Mainly controlled by demise of skeletal bioconstructors[J]. Scientific Reports, 2016, 6: 39694.
[49] Scrutton C T. The Palaeozoic corals, I: Origins and relationships[J]. Proceedings of the Yorkshire Geological Society, 1997, 51: 177-208.
[50] Copper P. Silurian and Devonian reefs: 80 Million years of global greenhouse between two ice ages[M]//Kiessling W, Flügel E, Golonka J. Phanerozoic reef patterns. Tulsa: SEPM Society for Sedimentary Geology, 2002, 72: 181-238.
[51] Yao L, Aretz M, Wignall P B, et al. The longest delay: Re-emergence of coral reef ecosystems after the Late Devonian extinctions[J]. Earth-Science Reviews, 2020, 203: 103060.
[52] Leven E J. The Mid-Early Permian regression and transgression of the tethys[M]//Embry A F, Beauchamp B, Glass D J. Pangea: Global environments and resources. Culver City: CSPG Special Publications, 1994, 17: 233-239.
[53] Scrutton C T. The Palaeozoic corals, II: Structure, variation and palaeoecology[J]. Proceedings of the Yorkshire Geological Society, 1998, 52: 1-57.
[54] Ross C A, Ross J R P. Late Paleozoic transgressive-regressive deposition[M]//Wilgus C K, Hastings B S, Posamentier H, et al. Sea-level changes: An integrated approach. Tulsa: SEPM Society for Sedimentary Geology, 1988, 42: 227-247.
[55] Wu Y S, Fan J S. Calculating eustatic amplitude of Middle Permian from reefs[J]. Science in China: Earth Sciences, 2002, 45(3): 221-232.
[56] Aretz M, Herbig H G, Somerville I D, et al. Rugose coral biostromes in the Late Viséan (Mississippian) of NW Ireland: Bioevents on an extensive carbonate platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292(3/4): 488-506.
[57] Yao L, Wang X D. Distribution and evolution of Carboniferous reefs in South China[J]. Palaeoworld, 2016, 25(3): 362-376.
[58] Crowley T J, Baum S K. Estimating Carboniferous sea-level fluctuations from Gondwanan ice extent[J]. Geology, 1991, 19(10): 975-977.
[59] Haq B U, Schutter S R. A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68.
[60] Montañez I P, McElwain J C, Poulsen C J, et al. Climate, PCO2and terrestrial carbon cycle linkages during Late Palaeozoic glacial-interglacial cycles[J]. Nature Geoscience, 2016, 9(11): 824-828.
[61] Foster G L, Royer D L, Lunt D J. Future climate forcing potentially without precedent in the last 420 million years[J]. Nature Communications, 2017, 8: 14845.
[62] Soreghan G S, Soreghan M J, Heavens N G. Explosive volcanism as a key driver of the Late Paleozoic Ice Age[J]. Geology, 2019, 47(7): 600-604.
[63] Kaiser S I, Aretz M, Becker R T. The global Hangenberg Crisis (Devonian-Carboniferous transition): Review of a first-order mass extinction[M]//Becker R T, Königshof P, Brett C E. Devonian climate, sea level and evolutionary events. London: Geological Society of London, 2016, 423: 387-437.
[64] Saltzman M R, González L A, Lohmann K C. Earliest Carboniferous cooling step triggered by the Antler orogeny?[J]. Geology, 2000, 28(4): 347-350.
[65] Saltzman M R, Groessens E, Zhuravlev A V. Carbon cycle models based on extreme changes in δ13C: An example from the Lower Mississippian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 213(3/4): 359-377.
[66] Qie W K, Zhang X H, Du Y S, et al. Lower Carboniferous carbon isotope stratigraphy in South China: Implications for the Late Paleozoic glaciation[J]. Science China Earth Sciences, 2011, 54(1): 84-92.
[67] Wang X D, Qie W K, Sheng Q Y, et al. Carboniferous and Lower Permian sedimentological cycles and biotic events of South China[M]//Gąsiewicz A, Słowakiewicz M. Palaeozoic climate cycles: Their evolutionary and sedimentological impact. London: Geological Society of London, 2013, 376: 33-46.
[68] Yao L, Aretz M. Upper Visean (Mississippian) metazoan-microbial reefs from Guangxi, South China: Insights regarding reef recovery after the end-Devonian extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560: 109994.
[69] Rygel M C, Fielding C R, Frank T D, et al. The magnitude of Late Paleozoic glacioeustatic fluctuations: A synthesis[J]. Journal of Sedimentary Research, 2008, 78(8): 500-511.
[70] Henry L C, Isbell J L, Limarino C O. Carboniferous glacigenic deposits of the proto-Precordillera of west-central Argentina[M]//Fielding C R, Frank T D, Isbell J L. Resolving the Late Paleozoic Ice Age in time and space. Boulder: Geological Society of America, 2008, 441: 131-142.
[71] Isbell J L, Cole D I, Catuneanu O. Carboniferous-Permian glaciation in the main Karoo Basin, South Africa: Stratigraphy, depositional controls, and glacial dynamics[M]//Fielding C R, Frank T D, Isbell J L. Resolving the Late Paleozoic Ice Age in time and space. Boulder: Geological Society of America, 2008, 441: 71-82.
[72] Mory A J, Redfern J, Martin J R. A review of Permian-Carboniferous glacial deposits in western Australia[M]//Fielding C R, Frank T D, Isbell J L. Resolving the Late Paleozoic Ice Age in time and space. Boulder: Geological Society of America, 2008, 441: 29-40.
[73] Sepkoski Jr J J. Patterns of Phanerozoic extinction: A perspective from global data bases[M]//Walliser O H. Global events and event stratigraphy in the Phanerozoic. Berlin: Springer, 1996: 35-51.
[74] McGhee G R, Sheehan P M, Bottjer D J, et al. Ecological ranking of Phanerozoic biodiversity crises: The Serpukhovian (Early Carboniferous) crisis had a greater ecological impact than the end-Ordovician[J]. Geology, 2012, 40(2): 147-150.
[75] West R R. Temporal changes in Carboniferous reef mound communities[J]. Palaios, 1988, 3(2): 152-169.
[76] Nakazawa T. Carboniferous reef succession of the Panthalassan open-ocean setting: Example from Omi limestone, central Japan[J]. Facies, 2001, 44(1): 183-210.
[77] Suchy D R, West R R. Chaetetid buildups in a Westphalian (Desmoinesian) cyclothem in southeastern Kansas[J]. Palaios, 2001, 16(5): 425-443.
[78] Zhang Y L, Gong E P, Wilson M A, et al. Palaeoecology of Late Carboniferous encrusting chaetetids in North China[J]. Palaeobiodiversity and Palaeoenvironments, 2018, 98(2): 205-223.
[79] Chen J T, Montañez I P, Zhang S, et al. Marine anoxia linked to abrupt global warming during Earth’s penultimate icehouse[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(19): e2115231119.
[80] Wang L F, Gong E P, Yang Z Y, et al. Controlling of the Late Palaeozoic glaciation on reef evolution: A case study of a Late Kasimovian coral reef in southern Guizhou, South China[J]. Geological Journal, 2023, 58(4): 1656-1672.
[81] Angiolini L, Jadoul F, Leng M J, et al. How cold were the Early Permian glacial tropics? Testing sea-surface temperature using the oxygen isotope composition of rigorously screened brachiopod shells[J]. Journal of the Geological Society, 2009, 166(5): 933-945.
[82] Mii H S, Grossman E L, Yancey T E. Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation[J]. Geological Society of America Bulletin, 1999, 111(7): 960-973.