[1] Tanhua T, Bates N R, Körtzinger A. The marine carbon cycle and ocean carbon inventories[J]. International Geophysics, 2013, 103: 787-815.
[2] Shao H B, Yang S Y, Cai F, et al. Sources and burial of organic carbon in the middle Okinawa Trough during Late Quaternary paleoenvironmental change[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 118: 46-56.
[3] Chen C T A, Borges A V. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2 [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(8/9/10): 578-590.
[4] 朱茂旭,史晓宁,杨桂朋,等. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展,2011,26(4):355-364.

Zhu Maoxu, Shi Xiaoning, Yang Guipeng, et al. Relative contributions of various early diagenetic pathways to mineralization of organic matter in marine sediments: An overview[J]. Advances in Earth Science, 2011, 26(4): 355-364.
[5] Hedges J I, Keil R G. Sedimentary organic matter preservation: An assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2/3): 81-115.
[6] 窦衍光,陈晓辉,李军,等. 东海外陆架-陆坡-冲绳海槽不同沉积单元底质沉积物成因及物源分析[J]. 海洋地质与第四纪地质,2018,38(4):21-31.

Dou Yanguang, Chen Xiaohui, Li Jun, et al. Origin and provenance of the surficial sediments in the subenvironments of the East China Sea[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 21-31.
[7] Dou Y G, Yang S Y, Liu Z X, et al. Clay mineral evolution in the central Okinawa Trough since 28 ka: Implications for sediment provenance and paleoenvironmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 288(1/2/3/4): 108-117.
[8] 徐兆凯,常凤鸣,李铁刚,等. 24ka来冲绳海槽北部沉积物来源的高分辨率常量元素记录[J]. 海洋地质与第四纪地质,2012,32(4):73-82.

Xu Zhaokai, Chang Fengming, Li Tiegang, et al. Provenance of sediments in the northern Okinawa Trough over the last 24 ka: High resolution record from major elements[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 73-82.
[9] Kao S J, Dai M H, Wei K Y, et al. Enhanced supply of fossil organic carbon to the Okinawa Trough since the last deglaciation[J]. Paleoceanography, 2008, 23(2): PA2207.
[10] Ujiié H, Hatakeyama Y, Gu X X, et al. Upward decrease of organic C/N ratios in the Okinawa Trough cores: Proxy for tracing the post-glacial retreat of the continental shore line[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 165(1/2): 129-140.
[11] 邢磊,赵美训,张海龙,等. 冲绳海槽中部过去15 ka来浮游植物生产力和种群结构变化的生物标志物重建[J]. 科学通报,2008,53(12):1448-1455.

Xing Lei, Zhao Meixun, Zhang Hailong, et al. Biomarker reconstruction of phytoplankton productivity and community structure changes in the middle Okinawa Trough during the last 15 ka[J]. Chinese Science Bulletin, 2008, 53(12): 1448-1455.
[12] Xu Z K, Li T G, Chang F M, et al. Sediment provenance discrimination in northern Okinawa Trough during the last 24 ka and paleoenvironmental implication: Rare earth elements evidence[J]. Journal of Rare Earths, 2012, 30(11): 1184-1190.
[13] 王玥铭,窦衍光,徐景平,等. 16 ka以来冲绳海槽中南部有机质来源及其对上升流演变的指示[J]. 第四纪研究,2018,38(3):769-781.

Wang Yueming, Dou Yanguang, Xu Jingping, et al. Organic matter source in the middle southern Okinawa Trough and its indication to upwelling evolution since 16 ka[J]. Quaternary Sciences, 2018, 38(3): 769-781.
[14] Li D W, Zheng L W, Jaccard S L, et al. Millennial-scale ocean dynamics controlled export productivity in the subtropical North Pacific[J]. Geology, 2017, 45(7): 651-654.
[15] Dou Y G, Yang S Y, Li C, et al. Deepwater redox changes in the southern Okinawa Trough since the last glacial maximum[J]. Progress in Oceanography, 2015, 135: 77-90.
[16] Zhao J T, Li J, Cai F, et al. Sea surface temperature variation during the last deglaciation in the southern Okinawa Trough: Modulation of high latitude teleconnections and the Kuroshio Current[J]. Progress in Oceanography, 2015, 138: 238-248.
[17] 李铁刚,常凤鸣. 冲绳海槽古海洋学[M]. 北京:海洋出版社,2009:1.

Li Tiegang, Chang Fengming. Paleoceanography in the Okinawa Trough[M]. Beijing: Ocean Press, 2009: 1.
[18] Dou Y G, Yang S Y, Liu Z X, et al. Sr-Nd isotopic constraints on terrigenous sediment provenances and Kuroshio Current variability in the Okinawa Trough during the Late Quaternary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 365-366: 38-47.
[19] Dou Y G, Yang S Y, Shi X F, et al. Provenance weathering and erosion records in southern Okinawa Trough sediments since 28 ka: Geochemical and Sr-Nd-Pb isotopic evidences[J]. Chemical Geology, 2016, 425: 93-109.
[20] 李广雪,刘勇,杨子赓. 中国东部陆架沉积环境对末次冰盛期以来海面阶段性上升的响应[J]. 海洋地质与第四纪地质,2009,29(4):13-19.

Li Guangxue, Liu Yong, Yang Zigeng. Sea-level rise and sedimentary environment response in the East China continental shelf since the last glacial maximum[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 13-19.
[21] Wang Y J, Cheng H, Edwards R L, et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature, 2008, 451(7182): 1090-1093.
[22] 孟宪伟,杜德文,刘焱光,等. 冲绳海槽近3.5万a来陆源物质沉积通量及其对气候变化的响应[J]. 海洋学报,2007,29(5):74-80.

Meng Xianwei, Du Dewen, Liu Yanguang, et al. Terrestrial flux in sediments from the Okinawa Trough and its response to climate changes over the past 35 000 a[J]. Acta Oceanologica Sinica, 2007, 29(5): 74-80.
[23] Mei X, Li X X, Wang Z B, et al. Cross shelf transport of terrigenous organic matter in surface sediments from outer shelf to Okinawa Trough in East China Sea[J]. Journal of Marine Systems, 2019, 199: 103224, doi: 10.1016/j.jmarsys.2019.103224 .
[24] 窦衍光,杨守业,唐珉,等. 冲绳海槽中部28ka以来陆源物质输入和古环境演化的生源组分记录[J]. 第四纪研究,2011,31(2):236-243.

Dou Yanguang, Yang Shouye, Tang Min, et al. Using biogenic components to decipher the terrigenous input and paleoenvironmental changes over the last 28ka in the middle Okinawa Trough[J]. Quaternary Sciences, 2011, 31(2): 236-243.
[25] Li D W, Chang Y P, Li Q, et al. Effect of sea-level on organic carbon preservation in the Okinawa Trough over the last 91 kyr[J]. Marine Geology, 2018, 399: 148-157.
[26] Liang H R, Xu G S, Xu F H, et al. Paleoenvironmental evolution and organic matter accumulation in an oxygen-enriched lacustrine Basin: A case study from the Laizhou Bay Sag, southern Bohai Sea (China)[J]. International Journal of Coal Geology, 2020, 217: 103318.
[27] Lu Y B, Jiang S, Lu Y C, et al. Productivity or preservation? The factors controlling the organic matter accumulation in the Late Katian through Hirnantian Wufeng organic-rich shale, South China[J]. Marine and Petroleum Geology, 2019, 109: 22-35.
[28] Chen C, Mu C L, Zhou K K, et al. The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin, South China[J]. Marine and Petroleum Geology, 2016, 76: 159-175.
[29] Yan D T, Wang H, Fu Q L, et al. Organic matter accumulation of Late Ordovician sediments in North Guizhou province, China: Sulfur isotope and trace element evidences[J]. Marine and Petroleum Geology, 2015, 59: 348-358.
[30] He J H, Ding W L, Jiang Z X, et al. Mineralogical and chemical distribution of the Es3 L oil shale in the Jiyang Depression, Bohai Bay Basin (E China): Implications for paleoenvironmental reconstruction and organic matter accumulation[J]. Marine and Petroleum Geology, 2017, 81: 196-219.
[31] Chang Y P, Wang W L, Yokoyama Y, et al. Millennial-scale planktic foraminifer faunal variability in the East China Sea during the past 40000 years (IMAGES MD012404 from the Okinawa Trough)[J]. Terrestrial Atmospheric and Oceanic Sciences, 2008, 19(4): 389-401.
[32] Zheng X F, Li A C, Kao S, et al. Synchronicity of Kuroshio Current and climate system variability since the Last Glacial Maximum[J]. Earth and Planetary Science Letters, 2016, 452: 247-257.
[33] Lim D, Kim J, Xu Z K, et al. New evidence for Kuroshio inflow and deepwater circulation in the Okinawa Trough, East China Sea: Sedimentary mercury variations over the last 20 kyr[J]. Paleoceanography, 2017, 32(6): 571-579.
[34] 余丽清. 生物地球化学指标对台湾中部头社盆地中全新世以来古气候记录研究[D]. 南昌:江西师范大学,2017.

Yu Liqing. Study on the paleoclimatic records of the mid Holocene in Taiwan Toushe Basin based on biogeochemical indexes[D]. Nanchang: Jiangxi Normal University, 2017.
[35] Chen H F, Wen S Y, Song S R, et al. Strengthening of paleo-typhoon and autumn rainfall in Taiwan corresponding to the southern Oscillation at Late Holocene[J]. Journal of Quaternary Science, 2012, 27(9): 964-972.
[36] 杨劲松,王永,闵隆瑞,等. 萨拉乌苏河流域第四纪地层及古环境研究综述[J]. 地质论评,2012,58(6):1121-1132.

Yang Jinsong, Wang Yong, Min Longrui, et al. Review of Quaternary strata and paleoenvironment on Salawusu River valley in North China[J]. Geological Review, 2012, 58(6): 1121-1132.
[37] 孙继敏,丁仲礼,刘东生,等. 末次间冰期以来沙漠—黄土边界带的环境演变[J]. 第四纪研究,1995,15(2):117-122.

Sun Jimin, Ding Zhongli, Liu Tungsheng, et al. Environmental changes in the desert-loess transitional zone of north China since beginning of the last interglacial[J]. Quaternary Sciences, 1995, 15(2): 117-122.
[38] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian Monsoon: Links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854-857.
[39] Nakamura H, Nishina A, Liu Z J, et al. Intermediate and deep water formation in the Okinawa Trough[J]. Journal of Geophysical Research: Oceans, 2013, 118(12): 6881-6893.
[40] Sarmiento J L, Gruber N, Brzezinski M A, et al. High-latitude controls of thermocline nutrients and low latitude biological productivity[J]. Nature, 2004, 427(6969): 56-60.
[41] Nishina A, Nakamura H, Park J H, et al. Deep ventilation in the Okinawa Trough induced by Kerama Gap overflow[J]. Journal of Geophysical Research: Oceans, 2016, 121(8): 6092-6102.
[42] Crusius J, Pedersen T F, Kienast S, et al. Influence of northwest Pacific productivity on North Pacific Intermediate Water oxygen concentrations during the Bølling-Ållerød interval (14.7-12.9 ka)[J]. Geology, 2004, 32(7): 633-636.
[43] Gorbarenko S A, Wang P, Wang R, et al. Orbital and suborbital environmental changes in the southern Bering Sea during the last 50 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 286(1/2): 97-106.
[44] Gorbarenko S A, Artemova A V, Goldberg E L, et al. The response of the Okhotsk Sea environment to the orbital-millennium global climate changes during the Last Glacial Maximum, deglaciation and Holocene[J]. Global and Planetary Change, 2014, 116: 76-90.
[45] Kohfeld K E, Chase Z. Controls on deglacial changes in biogenic fluxes in the North Pacific Ocean[J]. Quaternary Science Reviews, 2011, 30(23/24): 3350-3363.
[46] Khim B K, Sakamoto T, Harada N. Reconstruction of surface water conditions in the central region of the Okhotsk Sea during the last 180 kyrs[J]. Deep sea Research Part Ⅱ: Topical Studies in Oceanography, 2012, 61-64: 63-72.
[47] Kim S, Khim B K, Ikehara K, et al. Millennial-scale changes of surface and bottom water conditions in the northwestern Pacific during the last deglaciation[J]. Global and Planetary Change, 2017, 154: 33-43.
[48] Seki O, Ikehara M, Kawamura K, et al. Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr[J]. Paleoceanography, 2004, 19(1): PA1016, doi: 10.1029/2002PA000808 .
[49] Narita H, Sato M, Tsunogai S, et al. Biogenic opal indicating less productive northwestern North Pacific during the glacial ages[J]. Geophysical Research Letters, 2002, 29(15): 1732.
[50] Okumura Y M, Deser C, Hu A X, et al. North Pacific climate response to freshwater forcing in the subArctic North Atlantic: Oceanic and atmospheric pathways[J]. Journal of Climate, 2009, 22(6): 1424-1445.
[51] Schneider T, Bischoff T, Haug G H, et al. Migrations and dynamics of the intertropical convergence zone[J]. Nature, 2014, 513(7516): 45-53.
[52] Okazaki Y, Takahashi K, Asahi H, et al. Productivity changes in the Bering Sea during the Late Quaternary[J]. Deep sea Research Part Ⅱ: Topical Studies in Oceanography, 2005, 52(16/17/18): 2150-2162.
[53] Galbraith E D, Jaccard S L, Pedersen T F, et al. Carbon dioxide release from the North Pacific abyss during the last deglaciation[J]. Nature, 2007, 449(7164): 890-893.
[54] Lembke-Jene L, Tiedemann R, Nürnberg D, et al. Deglacial variability in Okhotsk Sea Intermediate Water ventilation and biogeochemistry: Implications for North Pacific nutrient supply and productivity[J]. Quaternary Science Reviews, 2017, 160: 116-137.
[55] Kao S J, Liu K K, Hsu S C, et al. North Pacific-wide spreading of isotopically heavy nitrogen during the last deglaciation: Evidence from the western Pacific[J]. Biogeosciences, 2008, 5(6): 1641-1650.
[56] Okazaki Y, Kimoto K, Asahi H, et al. Glacial to deglacial ventilation and productivity changes in the southern Okhotsk Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 395: 53-66.
[57] Marchitto T M, Lehman S J, Ortiz J D, et al. Marine radiocarbon evidence for the mechanism of deglacial atmospheric CO2 rise[J]. Science, 2007, 316(5830): 1456-1459.
[58] Galbraith E D, Jaccard S L. Deglacial weakening of the oceanic soft tissue pump: Global constraints from sedimentary nitrogen isotopes and oxygenation proxies[J]. Quaternary Science Reviews, 2015, 109: 38-48.
[59] Pride C, Thunell R, Sigman D, et al. Nitrogen isotopic variations in the Gulf of California since the Last Deglaciation: Response to global climate change[J]. Paleoceanography, 1999, 14(3): 397-409.
[60] Kim S, Khim B K, Uchida M, et al. Millennial-scale paleoceanographic events and implication for the intermediate-water ventilation in the northern slope area of the Bering Sea during the last 71 kyrs[J]. Global and Planetary Change, 2011, 79(1/2): 89-98.
[61] Schlung S A, Ravelo A C, Aiello I W, et al. Millennial‐scale climate change and intermediate water circulation in the Bering Sea from 90 ka: A high‐resolution record from IODP Site U1340[J]. Paleoceanography, 2013, 28(1): 54-67.
[62] Codispoti L A, Brandes J A, Christensen·J P, et al. The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the Anthropocene?[J]. Scientia Marina, 2001, 65(Suppl.2): 85-105.
[63] Riethdorf J R, Thibodeau B, Ikehara M, et al. Surface nitrate utilization in the Bering sea since 180 kA BP: Insight from sedimentary nitrogen isotopes[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 125-126: 163-176.