[1] 刘盼盼. 中国首次发布全球锂、钴、镍、锡、钾盐矿产资源储量评估报告[N]. 中国矿业报,2021-10-22(001).

Liu Panpan. China first published a global assessment report on lithium, cobalt, nickel, tin and potassium mineral resources reserves[N]. China Mining Journal, 2021-10-22 (001).
[2] 熊增华,王石军. 中国钾资源开发利用技术及产业发展综述[J]. 矿产保护与利用,2020,40(6):1-7.

Xiong Zenghua, Wang Shijun. Overview of potassium resources exploitation & utilization technology and potash industry development[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 1-7.
[3] 李政. 四川盆地富钾卤水地球化学特征及成因探讨[D]. 成都:成都理工大学,2014.

Li Zheng. Geochemical characteristics of potassium-rich brine in Sichuan Basin and its genesis[D]. Chengdu: Chengdu University of Technology, 2014.
[4] 张苏江,崔立伟,高鹏鑫,等. 中国钾盐资源形势分析及管理对策建议[J]. 无机盐工业,2015,47(11):1-6.

Zhang Sujiang, Cui Liwei, Gao Pengxin, et al. Analysis on development situation of potash ore resources and recommended management strategies in China[J]. Inorganic Chemicals Industry, 2015, 47(11): 1-6.
[5] 谭红兵,曹成东,李廷伟,等. 柴达木盆地西部古近系和新近系油田卤水资源水化学特征及化学演化[J]. 古地理学报,2007,9(3):313-320.

Tan Hongbing, Cao Chengdong, Li Tingwei, et al. Hydrochemistry characteristics and chemical evolution of oilfield brines of the Paleogene and Neogene in western Qaidam Basin[J]. Journal of Palaeogeography, 2007, 9(3): 313-320.
[6] 毛建业,汪青川,王占巍,等. 青海茫崖狮子沟地区深层卤水钾盐成矿远景区矿产资源调查[J]. 中国锰业,2017,35(5):87-89,93.

Mao Jianye, Wang Qingchuan, Wang Zhanwei, et al. Mineral resources of potash ore prospecting of deep brines in Shizigou area of Mangnai in Qinghai[J]. China’s Manganese Industry, 2017, 35(5): 87-89, 93.
[7] 刘溪溪,岳鑫,袁文虎,等. 柴达木盆地西部狮子沟背斜构造区深部卤水水化学特征及演化分析[J]. 盐湖研究,2019,27(1):73-81.

Liu Xixi, Yue Xin, Yuan Wenhu, et al. Hydrochemical characteristics and evolutionary process of deep brines from Shizigou anticline structure in Qaidam Basin, China[J]. Journal of Salt Lake Research, 2019, 27(1): 73-81.
[8] 王琳霖,于冬冬,浮昀,等. 柴达木盆地西部构造演化与差异变形特征及对油田水分布的控制[J]. 石油实验地质,2020,42(2):186-192.

Wang Linlin, Yu Dongdong, Fu Yun, et al. Tectonic evolution and differential deformation controls on oilfield water distribution in western Qaidam Basin[J]. Petroleum Geology and Experiment, 2020, 42(2): 186-192.
[9] 李兆龙. 柴达木盆地狮子沟构造油气成藏条件与成藏模式研究[J]. 西部探矿工程,2017,29(10):49-52.

Li Zhaolong. Research on hydrocarbon accumulation conditions and accumulation mode of Shizigou structure in Qaidam Basin[J]. Western Prospecting Project, 2017, 29(10): 49-52.
[10] 张金明,付彦文,田成秀,等. 柴达木盆地西部始新世晚期岩相古地理特征及盐岩成因[J]. 地层学杂志,2021,45(4):545-553.

Zhang Jinming, Fu Yanwen, Tian Chengxiu, et al. Lithofacies paleogeography and genesis of salt rock in the late Eocene of western Qaidam Basin[J]. Journal of Stratigraphy, 2021, 45(4): 545-553.
[11] 赵加凡,陈小宏,杜业波. 柴达木第三纪湖盆沉积演化史[J]. 石油勘探与开发,2004,31(3):41-44.

Zhao Jiafan, Chen Xiaohong, Du Yebo. The Tertiary sedimentary evolution of the Qaidam Basin, Northwest China[J]. Petroleum Exploration and Development, 2004, 31(3): 41-44.
[12] 张世铭,张小军,张婷静,等. 柴西狮子沟地区古近系下干柴沟组混积岩储层特征及影响因素分析[J]. 现代地质,2017,31(5):1059-1068,1087.

Zhang Shiming, Zhang Xiaojun, Zhang Tingjing, et al. Reservoir characteristics of the paleogene mixed carbonate-siliciclastic rock or succession and its influencing factors in the Shizigou area of the western Qaidam Basin[J]. Geoscience, 2017, 31(5): 1059-1068, 1087.
[13] 李元奎,王铁成. 柴达木盆地狮子沟地区中深层裂缝性油藏[J]. 石油勘探与开发,2001,28(6):12-15.

Li Yuankui, Wang Tiecheng. Middle-deep fractured oil reservoirs of Shizigou area in Qaidam Basin[J]. Petroleum Exploration and Development, 2001, 28(6): 12-15.
[14] 莫志庭,晋生凯,莫建青,等. 探讨狮子沟油田地质特征与开发对策[J]. 中国石油和化工标准与质量,2013,34(2):188.

Mo Zhiting, Jin Shengkai, Mo Jianqing, et al. Discussion on geological characteristics and development countermeasures of Shizigou oilfield[J]. Petroleum and Chemical Standards and Quality of China, 2013, 34(2): 188.
[15] 隋立伟,方世虎,孙永河,等. 柴达木盆地西部狮子沟—英东构造带构造演化及控藏特征[J]. 地学前缘,2014,21(1):261-270.

Sui Liwei, Fang Shihu, Sun Yonghe, et al. The tectonic evolution and accumulation controlling characteristics of Shizigou-Yingdong structural belt of western Qaidam Basin[J]. Earth Science Frontiers, 2014, 21(1): 261-270.
[16] 李翔,王建功,张平,等. 柴达木盆地英西地区E32裂缝成因与油气地质意义[J]. 岩性油气藏,2018,30(6):45-54.

Li Xiang, Wang Jiangong, Zhang Ping, et al. Fracture genesis mechanism and geological significance of E32 in Yingxi Area, Qaidam Basin[J]. Lithologic Reservoirs, 2018, 30(6): 45-54.
[17] Dessert C, Dupré B, François L M, et al. Erosion of Deccan Traps determined by river geochemistry: Impact on the global climate and the 87Sr/86Sr ratio of seawater[J]. Earth and Planetary Science Letters, 2001, 188(3/4): 459-474.
[18] Butterfield D A, Nelson B K, Wheat C G, et al. Evidence for basaltic Sr in midocean ridge-flank hydrothermal systems and implications for the global oceanic Sr isotope balance[J]. Geochimica et Cosmochimica Acta, 2001, 65(22): 4141-4153.
[19] 苗忠英,郑绵平,娄鹏程,等. 云南思茅盆地钾盐矿床的深源浅储成因模式:来自于Sr同位素的证据[J]. 中国地质,2022,49(6):1923-1935.

Miao Zhongying, Zheng Mianping, Lou Pengcheng, et al. The deep source and shallow mineralization model of potash deposits in the Simao Basin: Evidence from Sr isotope[J]. Geology in China, 2022, 49(6): 1923-1935.
[20] Tan H B, Rao W B, Ma H Z, et al. Hydrogen, oxygen, helium and strontium isotopic constraints on the formation of oilfield waters in the western Qaidam Basin, China[J]. Journal of Asian Earth Sciences, 2011, 40(2): 651-660.
[21] 李建森,山发寿,张西营. 阿尔金山两侧盐湖物质来源、成钾作用及其控制因素研究[J]. 地质学报,2021,95(7):2205-2213.

Li Jiansen, Shan Fashou, Zhang Xiying. Study on the material source, potassium formation and its controlling factors in salt lakes on both sides of the Altun Mountain[J]. Acta Geologica Sinica, 2021, 95(7): 2205-2213.
[22] 林晓英,曾溅辉,杨海军,等. 塔里木盆地哈得逊油田石炭系地层水化学特征及成因[J]. 现代地质,2012,26(2):377-383.

Lin Xiaoying, Zeng Jianhui, Yang Haijun, et al. Hydrochemical characteristics and genesis of Carboniferous strata in Hudson oilfield, Tarim Basin[J]. Geoscience, 2012, 26(2): 377-383.
[23] 尹菲. 四川盆地西南地区地下卤水水化学研究[D]. 北京:中国地质大学,2016.

Yin Fei. A study of the hydrochemistry of the subsurface brines in the southwestern Sichuan Basin[D]. Beijing: China University of Geosciences, 2016.
[24] 李建森,李廷伟,彭喜明,等. 柴达木盆地西部第三系油田水水文地球化学特征[J]. 石油与天然气地质,2014,35(1):50-55.

Li Jiansen, Li Tingwei, Peng Ximing, et al. Hydrogeochemical behaviors of oilfield water in the Tertiary in western Qaidam Basin[J]. Oil & Gas Geology, 2014, 35(1): 50-55.
[25] 韩佳君,周训,姜长龙,等. 柴达木盆地西部地下卤水水化学特征及其起源演化[J]. 现代地质,2013,27(6):1454-1464.

Han Jiajun, Zhou Xun, Jiang Changlong, et al. Hydrochemical characteristics, origin and evolution of the subsurface brines in western Qaidam Basin[J]. Geoscience, 2013, 27(6): 1454-1464.
[26] 樊启顺,马海州,谭红兵,等. 柴达木盆地西部卤水特征及成因探讨[J]. 地球化学,2007,36(6):601-611.

Fan Qishun, Ma Haizhou, Tan Hongbing, et al. Characteristics and origin of brines in western Qaidam Basin[J]. Geochimica, 2007, 36(6): 601-611.
[27] 李雯霞,张西营,苗卫良,等. 柴达木盆地北缘冷湖三号构造油田水水化学特征[J]. 盐湖研究,2016,24(2):12-18.

Li Wenxia, Zhang Xiying, Miao Weiliang, et al. Hydrochemical characteristics of oilfield waters in Lenghu No.3 structure area of north edge of Qaidam Basin[J]. Journal of Salt Lake Research, 2016, 24(2): 12-18.
[28] 石国成,张西营,李永寿,等. 柴达木盆地北缘冷湖四号构造油田水水化学组成及其分布特征[J]. 盐湖研究,2016,24(2):19-25.

Shi Guocheng, Zhang Xiying, Li Yongshou, et al. Hydrochemical components and their distribution characteristics of oilfield waters in No.4 structure of Lenghu, Qaidam Basin[J]. Journal of Salt Lake Research, 2016, 24(2): 19-25.
[29] 李建康,王登红,张德会,等. 四川甲基卡伟晶岩型锂多金属矿床成矿流体来源研究[J]. 岩石矿物学杂志,2006,25(1):45-52.

Li Jiankang, Wang Denghong, Zhang Dehui, et al. The source of ore-forming fluid in Jiajika pegmatite type lithium polymetallic deposit, Sichuan province[J]. Acta Petrologica et Mineralogica, 2006, 25(1): 45-52.
[30] 刘喜方,郑绵平,齐文. 西藏扎布耶盐湖超大型B、Li矿床成矿物质来源研究[J]. 地质学报,2007,81(12):1709-1715.

Liu Xifang, Zheng Mianping, Qi Wen. Sources of ore-forming materials of the superlarge B and Li deposit in Zabuye salt lake, Tibet, China[J]. Acta Geologica Sinica, 2007, 81(12): 1709-1715.
[31] Munk L, Chamberlain C P. Lithium brine resources: A predictive exploration model[R]. U.S. Geological Survey, 2011.
[32] Hofstra A H, Todorov T I, Mercer C N, et al. Silicate melt inclusion evidence for extreme pre-eruptive enrichment and post-eruptive depletion of lithium in silicic volcanic rocks of the western United States: Implications for the origin of lithium-rich brines[J]. Economic Geology, 2013, 108(7): 1691-1701.
[33] Cullen J T, Hurwitz S, Barnes J D, et al. The systematics of chlorine, lithium, and boron and δ37Cl, δ7Li, and δ11B in the hydrothermal system of the Yellowstone Plateau volcanic field[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(4): e2020GC009589.
[34] 徐凤银,尹成明,巩庆林,等. 柴达木盆地中、新生代构造演化及其对油气的控制[J]. 中国石油勘探,2006,11(6):9-16,37.

Xu Feng-yin, Yin Chengming, Gong Qinglin, et al. Mesozoic-Cenozoic structural evolution in Qaidam Basin and its control over oil and gas[J]. China Petroleum Exploration, 2006, 11(6): 9-16, 37.
[35] 吴海,柳少波,王立新,等. 断层活动性及其对烃源岩发育的影响:以柴达木盆地西部为例[J]. 地质学报,2021,95(6):1921-1934.

Wu Hai, Liu Shaobo, Wang Lixin, et al. Fault reactivation and its effect on the formation of source rock: A case study of western Qaidam Basin, Tibet Plateau[J]. Acta Geologica Sinica, 2021, 95(6): 1921-1934.
[36] 郭泽清,龙国徽,周飞,等. 咸化湖盆页岩油地质特征及资源潜力评价方法:以柴西坳陷下干柴沟组上段为例[J]. 地质学报,2023,97(7):2425-2444.

Guo Zeqing, Long Guohui, Zhou Fei, et al. Geological characteristics and resource evaluation method for shale oil in a salinized lake basin: A case study from the upper member of the Lower Ganchaigou Formation in western Qaidam Depression[J]. Acta Geologica Sinica, 2023, 97(7): 2425-2444.