[1] 陈树旺,公繁浩,杨建国,等. 松辽盆地外围油气基础地质调查工程进展与未来工作方向[J]. 中国地质调查,2016,3(6):1-9.

Chen Shuwang,Gong Fanhao,Yang Jianguo,et al. Progress and orientation of the project about fundamental geological survey on oil and gas resources in the periphery area of Songliao Basin[J]. Geological Survery of China,2016,3(6): 1-9.
[2] 丁秋红,李晓海,李文博,等. 辽宁北部秀水盆地义县组地层划分的地球物理响应特征[J]. 地质与资源,2020,29(1):44-52,6.

Ding Qiuhong,Li Xiaohai,Li Wenbo,et al. Geophysical response of the stratigraphic division of Yixian Formation in Xiushui Basin,northern Liaoning province[J]. Geology and Resources,2020,29(1): 44-52, 6
[3] 张鹏辉,张小博,袁永真,等. 辽河外围北部秀水盆地大地电磁测深研究[J]. 物探与化探,2019,43(5):986-996.

Zhang Penghui,Zhang Xiaobo,Yuan Yongzhen,et al. A study of magnetotelluric sounding of Xiushui Basin in the northern periphery of Liaohe[J]. Geophysical and Geochemical Exploration,2019,43(5): 986-996.
[4] 姚玉来,李晓海,司江福,等. 辽宁北部秀水盆地秀D1井烃源岩评价[J]. 地质与资源,2018,27(2):186-191.

Yao Yulai,Li Xiaohai,Si Jiangfu,et al. Evaluation on the source rocks from X-D1 well in Xiushui Basin,northern Liaoning province[J]. Geology and Resources,2018,27(2): 186-191.
[5] 李文博,李晓海,丁秋红,等. 辽宁北部秀水盆地白垩系义县组泥岩地球化学特征及地质意义[J]. 现代地质,2019,33(2):284-292.

Li Wenbo,Li Xiaohai,Ding Qiuhong,et al. Geochemical characteristics of the Cretaceous Yixian Formation mudstones in Xiushui Basin of northern Liaoning and their geological significance[J]. Geoscience,2019,33(2): 284-292.
[6] 丁秋红,陈树旺,李晓海,等. 辽宁省北部秀水盆地下白垩统地质特征及含油气前景[J]. 中国地质调查,2019,6(3):14-21.

Ding Qiuhong,Chen Shuwang,Li Xiaohai,et al. Geological characteristics and oil-bearing prospect of Lower Cretaceous in Xiushui Basin of northern Liaoning province[J]. Geological Survey of China,2019,6(3): 14-21.
[7] 丁秋红,陈树旺,李晓海,等. 辽宁北部秀水盆地秀D1井孢粉组合及其地层意义[J]. 地质通报,2017,36(8):1305-1318.

Ding Qiuhong,Chen Shuwang,Li Xiaohai,et al. Spore-pollen assemblages of Xiu D1 well in Xiushui Basin,northern Liaoning province and their stratigraphic singnificance[J]. Geological Bulletin of China,2017,36(8): 1305-1318.
[8] 李晓海,张健,李文博,等. 辽宁北部秀水盆地义县组碎屑岩锆石LA-ICP-MS U-Pb年龄及其义县组下限的确定[J/OL]. 中国地质. https://kns.cnki.net/kcms/detail/11.1167.P.20200727.1624.004.html. https://kns.cnki.net/kcms/detail/11.1167.P.20200727.1624.004.html

Li Xiaohai,Zhang Jian,Li Wenbo,et al. Zircons LA-ICP-MS U-Pb age of clastic rocks from Yixian Formation in Xiushui Basin,northern Liaoning and determination of lower Yixian Formation[J/OL]. Geology in China. https://kns.cnki.net/kcms/detail/11.1167.P.20200727.1624.004.html. https://kns.cnki.net/kcms/detail/11.1167.P.20200727.1624.004.html
[9] 李晓海,李文博,张健. 辽宁北部秀水盆地义县组烃源岩生物标志化合物特征及意义:以辽法D1井为例[J]. 地质论评,2019,65(增刊1):161-162.

Li Xiaohai,Li Wenbo,Zhang Jian. Characteristics and implication of biomarker compounds in source rocks from Yixian Formation in Xiushui Basin,northern Liaoning province: A case stduy of Liaofa D1 well[J]. Geological Review,2019,65(Suppl.1): 161-162.
[10] 王松山,胡华光,李佩贤,等. 再论辽西四合屯脊椎动物生存时代:Ar-Ar年龄证据[J]. 岩石学报,2001,17(4):663-668.

Wang Songshan,Hu Huaguang,Li Peixian,et al. Further discussion on the geologic age of Sihetun vertebrate assemblage in western Liaoning,China: Evidence from Ar-Ar dating[J]. Acta Petrologica Sinica,2001,17(4): 663-668.
[11] 王松山,王元青,胡华光,等. 辽西四合屯脊椎动物生存时代:锆石U-Pb年龄证据[J]. 科学通报,2001,46(4):330-333.

Wang Songshan,Wang Yuanqing,Hu Huaguang,et al. The existing time of Sihetun vertebrate in western Liaoning,China[J]. Chinese Science Bulletin,2001,46(4): 330-333.
[12] Chang S C,Zhang H C,Renne P R,et al. High-precision 40Ar/39Ar age for the Jehol Biota[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2009,280(1/2): 94-104.
[13] Ando A,Kakegawa T,Takashima R,et al. Stratigraphic carbon isotope fluctuations of detrital woody materials during the Aptian Stage in Hokkaido,Japan: Comprehensive δ 13C data from four sections of the Ashibetsu area[J]. Journal of Asian Earth Sciences,2003,21(8): 835-847.
[14] Hong S K,Lee Y I,Yi S. Carbon isotopic composition of terrestrial plant matter in the Upper Cretaceous Geoncheonri Formation,Gyeongsang Basin,Korea: Implications for Late Cretaceous palaeoclimate on the East Asian continental margin[J]. Cretaceous Research,2012,35: 169-177.
[15] Heimhofer U,Hochuli P A,Burla S,et al. Terrestrial carbon-isotope records from coastal deposits (Algarve,Portugal): A tool for chemostratigraphic correlation on an intrabasinal and global scale[J]. Terra Nova,2003,15(1): 8-13.
[16] Moore T A,Moroeng O M,Shen J,et al. Using carbon isotopes and organic composition to decipher climate and tectonics in the Early Cretaceous: An example from the Hailar Basin,Inner Mongolia,China[J]. Cretaceous Research,2021,118: 104674.
[17] Uramoto G I,Tahara R,Sekiya T,et al. Carbon isotope stratigraphy of terrestrial organic matter for the Turonian (Upper Cretaceous) in northern Japan: Implications for ocean-atmosphere δ13C trends during the mid-Cretaceous climatic optimum[J]. Geosphere,2013,9(2): 355-366.
[18] Hasegawa T. Cenomanian-Turonian Carbon isotope events recorded in terrestrial organic matter from northern Japan[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,1997,130(1/2/3/4): 251-273.
[19] Hasegawa T,Pratt L M,Maeda H,et al. Upper Cretaceous stable carbon isotope stratigraphy of terrestrial organic matter from Sakhalin,Russian Far East: A proxy for the isotopic composition of paleoatmospheric CO2 [J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2003,189(1/2): 97-115.
[20] Damsté J S S,van Bentum E C,Reichart G J,et al. A CO2 decrease-driven cooling and increased latitudinal temperature gradient during the mid-Cretaceous oceanic anoxic event 2[J]. Earth and Planetary Science Letters,2010,293(1/2): 97-103.
[21] Forster A,Schouten S,Moriya K,et al. Tropical warming and intermittent cooling during the Cenomanian/Turonian oceanic anoxic event 2: Sea surface temperature records from the equatorial Atlantic[J]. Paleoceanography,2007,22(1): PA1219.
[22] Zhang X L,Zhang G J,Sha J G. Lacustrine sedimentary record of early Aptian carbon cycle perturbation in western Liaoning,China[J]. Cretaceous Research,2016,62: 122-129.
[23] Cao H S,He W T. Correlation of carbon isotope stratigraphy and paleoenvironmental conditions in the Cretaceous Jehol Group,northeastern China[J]. International Geology Review,2020,62(1): 113-128.
[24] Zhang X Y,Li S J,Wang X X,et al. Expression of the early Aptian oceanic anoxic event (OAE) 1a in lacustrine depositional systems of East China[J]. Global and Planetary Change,2021,196: 103370.
[25] Ficken K J,Li B,Swain D L,et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry,2000,31(7/8): 745-749.
[26] Mead R,Xu Y P,Chong J,et al. Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes[J]. Organic Geochemistry,2005,36(3): 363-370.
[27] Eglinton G,Hamilton R J. Leaf epicuticular waxes: The waxy outer surfaces of most plants display a wide diversity of fine structure and chemical constituents[J]. Science,1967,156(3780): 1322-1335.
[28] Volkman J K. Sterols and other triterpenoids: Source specificity and evolution of biosynthetic pathways[J]. Organic Geochemistry,2005,36(2): 139-159.
[29] Volkman J K,Barrett S M,Dunstan G A,et al. Sterol biomarkers for microalgae from the green algal class Prasinophyceae[J]. Organic Geochemistry,1994,21(12): 1211-1218.
[30] Riboulleau A,Schnyder J,Riquier L,et al. Environmental change during the Early Cretaceous in the Purbeck-type Durlston Bay section (Dorset,southern England): A biomarker approach[J]. Organic Geochemistry,2007,38(11): 1804-1823.
[31] Peters K E,Walters C C,Moldowan J M. The biomarker guide: Biomarkers and isotopes in petroleum exploration and earth history[M]. 2nd ed. New York: Cambridge University Press,2005.
[32] Ourisson G,Albrecht P,Rohmer M. Predictive microbial biochemistry:From molecular fossils to procaryotic membranes[J]. Trends in Biochemical Sciences,1982,7(7): 236-239.
[33] Ourisson G,Rohmer M. Hopanoids. 2. Biohopanoids: A novel class of bacterial lipids[J]. Accounts of Chemical Research,1992,25(9): 403-408.
[34] dos Reis E S,Rodrigues R,Moldowan J M,et al. Biomarkers stratigraphy of Irati Formation (Lower Permian) in the southern portion of Paraná Basin (Brazil)[J]. Marine and Petroleum Geology,2018,95: 110-138.
[35] do Nascimento C A,de Souza E S,Martins L L,et al. Changes in depositional paleoenvironment of black shales in the Permian Irati Formation (Paraná Basin,Brazil): Geochemical evidence and aromatic biomarkers[J]. Marine and Petroleum Geology,2021,126: 104917.
[36] Moldowan J M,Seifert W K,Gallegos E J. Relationship between petroleum composition and depositional environment of petroleum source rocks[J]. AAPG Bulletin,1985,69(8): 1255-1268.
[37] Grice K,Schouten S,Peters K E,et al. Molecular isotopic characterisation of hydrocarbon biomarkers in Palaeocene-Eocene evaporitic,lacustrine source rocks from the Jianghan Basin,China[J]. Organic Geochemistry,1998,29(5/6/7): 1745-1764.
[38] Zubkov M V,Sazhin A F,Flint M V. The microplankton organisms at the oxic-anoxic interface in the pelagial of the Black Sea[J]. FEMS Microbiology Ecology,1992,10(4): 245-250.
[39] Ding X J,Liu G D,Zha M,et al. Characteristics and origin of lacustrine source rocks in the Lower Cretaceous,Erlian Basin,northern China[J]. Marine and Petroleum Geology,2015,66: 939-955.
[40] Didyk B M,Simoneit B R T,Brassell S C,et al. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J]. Nature,1978,272(5650): 216-222.
[41] Sieskind O,Joly G,Albrecht P. Simulation of the geochemical transformations of sterols: Superacid effect of clay minerals[J]. Geochimica et Cosmochimica Acta,1979,43(10): 1675-1679.
[42] 朱扬明,张春明,张敏,等. 沉积环境的氧化还原性对重排甾烷形成的作用[J]. 沉积学报,1997,15(4):104-108.

Zhu Yangming,Zhang Chunming,Zhang Min,et al. The effect of oxidation-reduction nature of depositional environments on the formation of diasteranes[J]. Acta Sedimentologica Sinica,1997,15(4): 104-108.
[43] Moldowan J M,Sundararaman P,Schoell M. Sensitivity of biomarker properties to depositional environment and/or source input in the lower Toarcian of SW-Germany[J]. Organic Geochemistry,1986,10(4/5/6): 915-926.
[44] Katz B J. Lacustrine basin hydrocarbon exploration-current thoughts[J]. Journal of Paleolimnology,2001,26(2): 161-179.
[45] Censi P,Randazzo L A,Zuddas P,et al. Trace element behaviour in seawater during Etna's pyroclastic activity in 2001: Concurrent effects of nutrients and formation of alteration minerals[J]. Journal of Volcanology and Geothermal Research,2010,193(1/2): 106-116.
[46] Zhang W Z,Yang W W,Xie L Q. Controls on organic matter accumulation in the Triassic Chang 7 lacustrine shale of the Ordos Basin,central China[J]. International Journal of Coal Geology,2017,183: 38-51.