[1] Dodson M H, Compston W, Williams I S, et al. A search for ancient detrital zircons in Zimbabwean sediments[J]. Journal of the Geological Society, 1988, 145(6): 977-983.
[2] Pell S D, Williams I S, Chivas A R. The use of protolith zircon-age fingerprints in determining the protosource areas for some Australian dune sands[J]. Sedimentary Geology, 1997, 109(3/4): 233-260.
[3] Fedo C M, Sircombe K N, Rainbird R H. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 277-303.
[4] 闫义,林舸,李自安. 利用锆石形态、成分组成及年龄分析进行沉积物源区示踪的综合研究[J]. 大地构造与成矿学,2003,27(2):184-190.

Yan Yi, Lin Ge, Li Zi’an. Provenance tracing of sediments by means of synthetic study of shape, composition and chronology of zircon[J]. Geotectonica et Metallogenia, 2003, 27(2): 184-190.
[5] Andersen T. Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation[J]. Chemical Geology, 2005, 216(3/4): 249-270.
[6] DeCelles P G, Carrapa B, Gehrels G E. Detrital zircon U-Pb ages provide provenance and chronostratigraphic information from Eocene synorogenic deposits in northwestern Argentina[J]. Geology, 2007, 35(4): 323-326.
[7] 张英利,王宗起,闫臻,等. 库鲁克塔格地区新元古代沉积物源分析:来自碎屑锆石年代学的证据[J]. 岩石学报,2011,27(1):121-132.

Zhang Yingli, Wang Zongqi, Yan Zhen, et al. Provenance of Neoproterozoic rocks in Quruqtagh area, Xinjiang: Evidence from detrital zircon geochronology[J]. Acta Petrologica Sinica, 2011, 27(1): 121-132.
[8] Stevens T, Carter A, Watson T P, et al. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2013, 78: 355-368.
[9] Fan M J, Mankin A, Chamberlain K. Provenance and depositional ages of Late Paleogene fluvial sedimentary rocks in the central Rocky Mountains, U.S.A.[J]. Journal of Sedimentary Research, 2015, 85(11): 1416-1430.
[10] Nie J S, Stevens T, Rittner M, et al. Loess plateau storage of northeastern Tibetan Plateau-derived Yellow River sediment[J]. Nature Communications, 2015, 6: 8511.
[11] 靳立杰,周汉文,朱云海,等. 东昆仑地区赛什腾组碎屑锆石U-Pb年代学:对其物质来源及地层时代的约束[J]. 大地构造与成矿学,2015,39(4):691-703.

Jin Lijie, Zhou Hanwen, Zhu Yunhai, et al. U-Pb age of the detrital zircon from the Serteng Formation in East Kunlun: Constraints on its provenance and formation time[J]. Geotectonica et Metallogenia, 2015, 39(4): 691-703.
[12] Markwitz V, Kirkland C L. Source to sink zircon grain shape: Constraints on selective preservation and significance for Western Australian Proterozoic basin provenance[J]. Geoscience Frontiers, 2018, 9(2): 415-430.
[13] Cheng F, Garzione C, Jolivet M, et al. Provenance analysis of the Yumen Basin and northern Qilian Shan: Implications for the pre-collisional paleogeography in the NE Tibetan plateau and eastern termination of Altyn Tagh fault[J]. Gondwana Research, 2019, 65: 156-171.
[14] Feng W, Meng Q Q, Song C H, et al. Detrital zircon U-Pb geochronology of the Wuyu (Oiyug) Basin, southern Tibetan Plateau, and its geological implications[J]. Gondwana Research, 2020, 83: 36-48.
[15] Dickinson W R, Gehrels G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 115-125.
[16] Tucker R T, Roberts E M, Hu Y, et al. Detrital zircon age constraints for the Winton Formation, Queensland: Contextualizing Australia’s late cretaceous dinosaur faunas[J]. Gondwana Research, 2013, 24(2): 767-779.
[17] Coutts D S, Matthews W A, Hubbard S M. Assessment of widely used methods to derive depositional ages from detrital zircon populations[J]. Geoscience Frontiers, 2019, 10(4): 1421-1435.
[18] Spencer C J, Kirkland C L, Taylor R J M. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology[J]. Geoscience Frontiers, 2016, 7(4): 581-589.
[19] Sickmann Z T, Schwartz T M, Graham S A. Refining stratigraphy and tectonic history using detrital zircon maximum depositional age: An example from the Cerro Fortaleza Formation, Austral Basin, southern Patagonia[J]. Basin Research, 2018, 30(4): 708-729.
[20] 丁振举,文成雄,国阿千,等. 西秦岭吴家山群地层时代及物源特征:来自碎屑锆石U-Pb年龄证据[J]. 地球科学与环境学报,2018,40(2):111-132.

Ding Zhenju, Wen Chengxiong, Guo Aqian, et al. Stratigraphic ages and provenance characteristics of Wujiashan Group in West Qinling, China: Evidences from detrital zircon U-Pb age[J]. Journal of Earth Sciences and Environment, 2018, 40(2): 111-132.
[21] Copeland P. On the use of geochronology of detrital grains in determining the time of deposition of clastic sedimentary strata[J]. Basin Research, 2020, doi: 10.1111/bre.12441.
[22] Ruhl K W, Hodges K V. The use of detrital mineral cooling ages to evaluate steady state assumptions in active orogens: An example from the central Nepalese Himalaya[J]. Tectonics, 2005, 24(4): TC4015.
[23] Bernet M, van der Beek P, Pik R, et al. Miocene to recent exhumation of the central Himalaya determined from combined detrital zircon fission-track and U/Pb analysis of Siwalik sediments, western Nepal[J]. Basin Research, 2006, 18(4): 393-412.
[24] Davis S J, Dickinson W R, Gehrels G E, et al. The Paleogene California river: Evidence of Mojave-Uinta paleodrainage from U-Pb ages of detrital zircons[J]. Geology, 2010, 38(10): 931-934.
[25] Blum M, Pecha M. Mid-Cretaceous to Paleocene North American drainage reorganization from detrital zircons[J]. Geology, 2014, 42(7): 607-610.
[26] Barbeau Jr D L, Olivero E B, Swanson-Hysell N L, et al. Detrital-zircon geochronology of the eastern Magallanes foreland basin: Implications for Eocene kinematics of the northern scotia arc and drake passage[J]. Earth and Planetary Science Letters, 2009, 284(3/4): 489-503.
[27] 徐亚军,杜远生,杨江海. 北祁连造山带晚奥陶世—泥盆纪构造演化:碎屑锆石年代学证据[J]. 地球科学:中国地质大学学报,2013,38(5):934-946.

Xu Yajun, Du Yuansheng, Yang Jianghai. Tectonic evolution of the North Qilian orogenic belt from the Late Ordovician to Devonian: Evidence from detrital zircon geochronology[J]. Earth Science:Journal of China University of Geosciences, 2013, 38(5): 934-946.
[28] Schwartz T M, Fosdick J C, Graham S A. Using detrital zircon U-Pb ages to calculate Late Cretaceous sedimentation rates in the Magallanes-Austral Basin, Patagonia[J]. Basin Research, 2017, 29(6): 725-746.
[29] Jackson Jr W T, Robinson D M, Weislogel A L, et al. Mesozoic development of nonmarine basins in the northern Yidun terrane: Deposition and deformation in the eastern Tibetan Plateau prior to the India-Asia collision[J]. Tectonics, 2018, 37(8): 2466-2485.
[30] Cao H W, Zhang Y H, Tang L, et al. Geochemistry, zircon U-Pb geochronology and Hf isotopes of Jurassic-Cretaceous granites in the Tengchong terrane, SW China: Implications for the Mesozoic tectono-magmatic evolution of the eastern Tethyan Tectonic Domain[J]. International Geology Review, 2019, 61(3): 257-279.
[31] Wei Y Q, Zhao Z D, Niu Y L, et al. Geochemistry, detrital zircon geochronology and Hf isotope of the clastic rocks in southern Tibet: Implications for the Jurassic-Cretaceous tectonic evolution of the Lhasa terrane[J]. Gondwana Research, 2020, 78: 41-57.
[32] Gehrels G E, Valencia V A, Ruiz J. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3): Q03017, doi: 10.1029/2007GC001805.
[33] Shaulis B, Lapen T J, Toms A. Signal linearity of an extended range pulse counting detector: Applications to accurate and precise U-Pb dating of zircon by laser ablation quadrupole ICP-MS[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(11): Q0AA11, doi: 10.1029/2010GC003198.
[34] Szymanowski D, Schoene B. U-Pb ID-TIMS geochronology using ATONA amplifiers[J]. Journal of Analytical Atomic Spectrometry, 2020, 6: DOI: 10.1039/d0ja00135.
[35] Gerdes A, Zeh A. Combined U-Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany[J]. Earth and Planetary Science Letters, 2006, 249(1/2): 47-61.
[36] 任博,冯盈,姚丽洁,等. 碎屑锆石U-Pb年代学在地学应用中的现状[J]. 甘肃地质,2018,27(2):1-9.

Ren Bo, Feng Ying, Yao Lijie, et al. The present state of detrital zircon U-Pb geochronology and its geological application[J]. Gansu Geology, 2018, 27(2): 1-9.
[37] 张凌,王平,陈玺赟,等. 碎屑锆石U-Pb年代学数据获取、分析与比较[J]. 地球科学进展,2020,35(4):414-430.

Zhang Ling, Wang Ping, Chen Xiyun, et al. Review in detrital zircon U-Pb geochronology: Data acquisition, analysis and comparison[J]. Advances in Earth Science, 2020, 35(4): 414-430.
[38] Vermeesch P, Garzanti E. Making geological sense of 'Big Data' in sedimentary provenance analysis[J]. Chemical Geology, 2015, 409: 20-27.
[39] Saylor J E, Sundell K E. Quantifying comparison of large detrital geochronology data sets[J]. Geosphere, 2016, 12(1): 203-220.
[40] Carter A, Bristow C S. Detrital zircon geochronology: Enhancing the quality of sedimentary source information through improved methodology and combined U-Pb and fission-track techniques[J]. Basin Research, 2000, 12(1): 47-57.
[41] Sircombe K N, Stern R A. An investigation of artificial biasing in detrital zircon U-Pb geochronology due to magnetic separation in sample preparation[J]. Geochimica et Cosmochimica Acta, 2002, 66(13): 2379-2397.
[42] Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62.
[43] 侯可军,李延河,邹天人,等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报,2007,23(10):2595-2604.

Hou Kejun, Li Yanhe, Zou Tianren, et al. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica, 2007, 23(10): 2595-2604.
[44] Sláma J, Košler J. Effects of sampling and mineral separation on accuracy of detrital zircon studies[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(5): Q05007, doi: 10.1029/2012GC004106.
[45] 郭佩,刘池洋,王建强,等. 碎屑锆石年代学在沉积物源研究中的应用及存在问题[J]. 沉积学报,2017,35(1):46-56.

Guo Pei, Liu Chiyang, Wang Jianqiang, et al. Considerations on the application of detrital-zircon geochronology to sedimentary provenance analysis[J]. Acta Sedimentologica Sinica, 2017, 35(1): 46-56.
[46] Vermeesch P. How many grains are needed for a provenance study?[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 441-451.
[47] Pullen A, Ibáñez-Mejía M, Gehrels G E, et al. What happens when n=1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6): 971-980.
[48] Daniels B G, Auchter N C, Hubbard S M, et al. Timing of deep-water slope evolution constrained by large-n detrital and volcanic ash zircon geochronology, Cretaceous Magallanes Basin, Chile[J]. GSA Bulletin, 2018, 130(3/4): 438-454.
[49] Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 469-495.
[50] 吴元保,郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报,2004,49(16):1589-1604.

Wu Yuanbao, Zheng Yongfei. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1604.
[51] 李长民. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究,2009,32(3):161-174.

Li Changmin. A review on the minerageny and situ microanalytical dating techniques of zircons[J]. Geological Survey and Research, 2009, 32(3): 161-174.
[52] Pupin P. Zircon and granite petrology[J]. Contributions to Mineralogy and Petrology, 1980, 73: 207-220.
[53] Ji W Q, Wu F Y, Chung S L, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet[J]. Chemical Geology, 2009, 262(3/4): 229-245.
[54] Yao J L, Shu L S, Santosh M. Detrital zircon U-Pb geochronology, Hf-isotopes and geochemistry—New clues for the Precambrian crustal evolution of Cathaysia Block, South China[J]. Gondwana Research, 2011, 20(2/3): 553-567.
[55] Yang W T, Yang J H, Wang X F, et al. Uplift-denudation history of the Qinling orogen: Constrained from the detrital-zircon U-Pb geochronology[J]. Journal of Asian Earth Sciences, 2014, 89: 54-65.
[56] Cheng F, Fu S T, Jolivet M, et al. Source to sink relation between the Eastern Kunlun Range and the Qaidam Basin, northern Tibetan Plateau, during the Cenozoic[J]. GSA Bulletin, 2016, 128(1/2): 258-283.
[57] Liu D L, Li H B, Sun Z M, et al. AFT dating constrains the Cenozoic uplift of the Qimen Tagh Mountains, Northeast Tibetan Plateau, comparison with LA-ICPMS Zircon U-Pb ages[J]. Gondwana Research, 2017, 41: 438-450.
[58] Song S S, Niu Y L, Su L, et al. Tectonics of the North Qilian orogen, NW China[J]. Gondwana Research, 2013, 23(4): 1378-1401.
[59] Dai S, Fang X M, Song C H, et al. Early tectonic uplift of the northern Tibetan Plateau[J]. Chinese Science Bulletin, 2005, 50(15): 1642-1652.
[60] Fang X M, Zhao Z J, Li J J, et al. Magnetostratigraphy of the Late Cenozoic Laojunmiao anticline in the northern Qilian Mts. and its implication on the northern Tibet uplift[J]. Science China (Seri. D): Earth Sciences, 2005, 48(7): 1040-1051.
[61] 陈杰,Wyrwoll K H,卢演俦,等. 祁连山北缘玉门砾岩的磁性地层年代与褶皱过程[J]. 第四纪研究,2006,26(1):20-31.

Chen Jie, Wyrwoll K H, Lu Yanchou, et al. Magnetochronology of the Yumen conglomerates and multi-pulsed folding and thrusting in the northern Qilianshan[J]. Quaternary Sciences, 2006, 26(1): 20-31.
[62] Bovet P M, Ritts B D, Gehrels G, et al. Evidence of Miocene crustal shortening in the North Qilian Shan from Cenozoic stratigraphy of the western Hexi Corridor, Gansu province, China[J]. American Journal of Science, 2009, 309(4): 290-329.
[63] Wang W T, Zhang P Z, Pang J Z, et al. The Cenozoic growth of the Qilian Shan in the northeastern Tibetan Plateau: A sedimentary archive from the Jiuxi Basin[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(4): 2235-2257.
[64] Wang W T, Zhang P Z, Yu J X, et al. Constraints on mountain building in the northeastern Tibet: Detrital zircon records from synorogenic deposits in the Yumen Basin[J]. Scientific Reports, 2016, 6(1): 27604.
[65] He P J, Song C H, Wang Y D, et al. Cenozoic exhumation in the Qilian Shan, northeastern Tibetan Plateau: Evidence from detrital fission track thermochronology in the Jiuquan Basin[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(8): 6910-6927.
[66] An K X, Lin X B, Wu L, et al. Reorganization of sediment dispersal in the Jiuxi Basin at ~17 Ma and its implications for uplift of the NE Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511: 558-576.
[67] Mackey G N, Horton B K, Milliken K L. Provenance of the Paleocene-Eocene Wilcox group, western gulf of Mexico Basin: Evidence for integrated drainage of the southern Laramide rocky mountains and cordilleran arc[J]. GSA Bulletin, 2012, 124(5/6): 1007-1024.
[68] Gehrels G. Detrital zircon U-Pb geochronology: Current methods and new opportunities[M]//Busby C, Azor A. Tectonics of sedimentary basins: Recent advances. Oxford: Wiley-Blackwell, 2012: 47-62.
[69] Griffin W L, Powell W J, Pearson N J, et al. GLITTER: Data reduction software for laser ablation ICP-MS[M]//Sylvester P. Laser Ablation ICP-MS in the earth sciences: Current practices and outstanding issues. Mineralogical Association of Canada, 2008: 308-311.
[70] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.
[71] Griffin W L, Belousova E A, Shee S R, et al. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Research, 2004, 131(3/4): 231-282.
[72] Vermeesch P. RadialPlotter: A Java application for fission track, luminescence and other radial plots[J]. Radiation Measurements, 2009, 44(4): 409-410.
[73] Vermeesch P. On the visualisation of detrital age distributions[J]. Chemical Geology, 2012, 312-313: 190-194.
[74] Mo X X, Hou Z Q, Niu Y L, et al. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet[J]. Lithos, 2007, 96(1/2): 225-242.