[1] 中华人民共和国国家质量监督检验检疫总局. GB/T 18190—2000 海洋学术语 海洋地质学 [S]. 北京:中国标准出版社,2000.

General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB/T 18190-2000 Oceanological terminology—Marine geology [S]. Beijing: Standards Press of China, 2000.
[2] Suteerasak T, Elming S Å, Possnert G, et al. Deposition rates and 14C apparent ages of Holocene sediments in the Bothnian Bay of the gulf of Bothnia using paleomagnetic dating as a reference[J]. Marine Geology, 2017, 383: 1-13.
[3] Meng W, Qin Y W, Zheng B H, et al. Heavy metal pollution in Tianjin Bohai Bay, China[J]. Journal of Environmental Sciences, 2008, 20(7): 814-819.
[4] Kirby J R, Kirby R. Medium timescale stability of tidal mudflats in Bridgwater Bay, Bristol Channel, UK: Influence of tides, waves and climate[J]. Continental Shelf Research, 2008, 28(19): 2615-2629.
[5] 陈沈良,杨世伦,吴瑞明. 杭州湾北岸潮滩沉积物粒度的时间变化及其沉积动力学意义[J]. 海洋科学进展,2004,22(3):299-305.

Chen Shenliang, Yang Shilun, Wu Ruiming. Temporal changes in tidal flat sediment grain size along the north bank of the Hangzhou Bay and their implication of sedimentation dynamics[J]. Advances in Marine Science, 2004, 22(3): 299-305.
[6] 陈桥,刘东艳,陈颖军,等. 粒级—标准偏差法和主成分因子分析法在粒度敏感因子提取中的对比[J]. 地球与环境,2013,41(3):319-325.

Chen Qiao, Liu Dongyan, Chen Yingjun, et al. Comparative analysis of grade-standard deviation method and factors analysis method for environmental sensitive factor analysis[J]. Earth and Environment, 2013, 41(3): 319-325.
[7] 周建超,吴敬禄,曾海鳌. 新疆乌伦古湖沉积物粒度特征揭示的环境信息[J]. 沉积学报,2017,35(6):1158-1165.

Zhou Jianchao, Wu Jinglu, Zeng Hai’ao. Environmental information inferred from environmentally sensitive grain-size component records in Wulungu Lake, Xinjiang[J]. Acta Sedimentologica Sinica, 2017, 35(06): 1158-1165.
[8] Liu J, Wang H, Wang F F, et al. Sedimentary evolution during the last ~1.9Ma near the western margin of the modern Bohai Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 451: 84-96.
[9] 王可,郑洪波, Prins M,等. 东海内陆架泥质沉积反映的古环境演化[J]. 海洋地质与第四纪地质,2008,28(4):1-10.

Wang Ke, Zheng Hongbo, Prins M, et al. High-resolution paleoenvironmental record of the mud sediments of the East China Sea inner shelf[J]. Marine Geology & Quaternary Geology, 2008, 28(4): 1-10.
[10] Sun D H, Bloemendal J, Rea D K, et al. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 2002, 152(3/4): 263-277.
[11] 冷传旭,袁鸿洁,徐翠玲,等. 对数比变换在因子分析法提取东亚冬季风敏感粒级中的应用:以南黄海中部泥质区H07孔为例[J]. 海洋地质与第四纪地质,2017,37(1):151-161.

Leng Chuanxu, Yuan Hongjie, Xu Cuiling, et al. Applications of logarithm ratio transformation to extraction of the sensitive grain size of East Asian winter monsoon by the method of factor analysis: A case study of core h07 from the central mud area of the south Yellow Sea[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 151-161.
[12] 钟阿娇,叶青,蔡小敏,等. 近8000年太湖沉积记录的气候变化与古里雅冰芯对比研究[J]. 甘肃科技,2020,36(22):35-37.

Zhong Ajiao, Ye Qing, Cai Xiaomin, et al. Comparative study of climate change recorded in Taihu Lake and Guliya ice core in recent 8000 years[J]. Gansu Science and Technology, 2020, 36(22): 35-37.
[13] Prins M A, Postma G, Weltje G J. Controls on terrigenous sediment supply to the Arabian Sea during the Late Quaternary: The Makran continental slope[J]. Marine Geology, 2000, 169(3/4): 351-371
[14] 滕珊,冯秀丽,田动会,等. 山东半岛泥质区沉积物敏感粒级分析及其环境意义[J]. 中国海洋大学学报,2018,48(增刊):71-81.

Teng Shan, Feng Xiuli, Tian Donghui, et al. Sensitive grain size components and their environmental singnificance of sediment in the Shandong Peninsula[J]. Periodical of Ocean University of China, 2018, 48(Suppl.1): 71-81.
[15] Yi L, Yu H J, Ortiz J D, et al. Late Quaternary linkage of sedimentary records to three astronomical rhythms and the Asian monsoon, inferred from a coastal borehole in the south Bohai Sea, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 329-330: 101-117.
[16] 冯秀丽,姜朝松,杨荣民,等. 威海湾建港条件分析[J]. 海岸工程,1992,11(1):41-48.

Feng Xiuli, Jiang Zhaosong, Yang Rongmin, et al. Analysis of conditions for harbour building in Weihai Bay[J]. Coastal Engineering, 1992, 11(1): 41-48.
[17] 黄骄文,金啟华,徐海明,等. 东亚季风环流由夏向冬的季节转变与中国前冬气候的关系[J]. 气象与环境科学,2018,41(3):11-20.

Huang Jiaowen, Jin Qihua, Xu Haiming, et al. Relationship between the seasonal transition of East Asian Monsoon circulation from summer to winter and early winter climate in China[J]. Meteorological and Environmental Sciences, 2018, 41(3): 11-20.
[18] 鲍献文,李娜,姚志刚,等. 北黄海温盐分布季节变化特征分析[J]. 中国海洋大学学报,2009,39(4):553-562.

Bao Xianwen, Li Na, Yao Zhigang, et al. Seasonal variation characteristics of temperature and salinity of the north Yellow Sea[J]. Periodical of Ocean University of China, 2009, 39(4): 553-562.
[19] 杨玉玲,吴永成. 威海湾南部水环境初步分析[J]. 海岸工程,1996,15(3):36-42.

Yang Yuling, Wu Yongcheng. A preliminary analysis of the aquatic environment of the south of Weihai Bay[J]. Coastal Engineering, 1996, 15(3): 36-42.
[20] 苏纪兰. 中国近海的环流动力机制研究[J]. 海洋学报,2001,23(4):1-16.

Su Jilan. A review of circulation dynamics of the coastal oceans near China[J]. Acta Oceanologica Sinica, 2001, 23(4): 1-16.
[21] Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1970, 13(4): 937-968.
[22] McManus J. Grain size determination and interpretation[M]//Tucker M. Techniques in sedimentology, techniques in sedimentology. Oxford: Backwell, 1988.
[23] Zhang X D, Wang H M, Xu S M, et al. A basic end-member model algorithm for grain-size data of marine sediments[J]. Estuarine, Coastal and Shelf Science, 2020, 236: 106656.
[24] 李腾飞,李金凤,鲁瑞洁,等. 青海湖东岸沙地风成沉积物粒度敏感组分及其古气候意义[J]. 中国沙漠,2017,37(5):878-884.

Li Tengfei, Li Jinfeng, Lu Ruijie, et al. Extraction of grain-size components with environmentally sensitivity of aeolian sediments in eastern shore of Qinghai Lake and their palaeoclimatic implications[J]. Journal of Desert Research, 2017, 37(5): 878-884.
[25] Darby D A, Ortiz J, Polyak L, et al. The role of currents and sea ice in both slowly deposited central Arctic and rapidly deposited Chukchi-Alaskan margin sediments[J]. Global and Planetary Change, 2009, 68(1/2): 58-72.
[26] 郑旭峰. 晚更新世末期以来冲绳海槽峡谷区沉积特征及其环境响应[D]. 青岛:中国科学院海洋研究所,2014.

Zheng Xufeng. Sedimentary characteristics of submarine canyon system and their environmental response since the Late Pleistocene[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2014.
[27] 朱颖涛. 全新世以来山东半岛泥质区沉积特征及环境演化[D]. 青岛:中国海洋大学,2020.

Zhu Yingtao. Sedimentary characteristics and environmental evolution of muddy area of Shandong Peninsula since the Holocene[D]. Qingdao: Ocean University of China, 2020.
[28] Dietze E, Hartmann K, Diekmann B, et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China[J]. Sedimentary Geology, 2012, 243-244: 169-180.
[29] Kang S G, Du J H, Wang N, et al. Early Holocene weakening and mid- to Late Holocene strengthening of the East Asian winter monsoon[J]. Geology, 2020, 48(11): 1043-1047.
[30] 沈星,褚忠信,王玥铭,等. 北黄海西部与南黄海中部泥质区岩芯敏感粒级及其环境意义[J]. 沉积学报,2015,33(1):124-133.

Shen Xing, Chu Zhongxin, Wang Yueming, et al. Sensitive grain size and its environmental significance of modern mud patches in southern and northern parts of the Yellow Sea[J]. Acta Sedimentologica Sinica, 2015, 33(1): 124-133.
[31] 丁大林,李广雪,徐继尚,等. 全新世亚洲季风演变[J]. 地学前缘,2017,24(4):112-123.

Ding Dalin, Li Guangxue, Xu Jishang, et al. Evolution of the Asian Monsoon during the Holocene[J]. Earth Science Frontiers, 2017, 24(4): 112-123.
[32] Zhang Y C, Zhu K, Huang C, et al. Asian winter monsoon imprint on Holocene SST changes at the northern coast of the South China Sea[J]. Geophysical Research Letters, 2019, 46(22): 13363-13370.
[33] Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian Monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1/2): 71-86.
[34] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian Monsoon: Links to solar changes and north Atlantic climate[J]. Science, 2005, 308(5723): 854-857.
[35] Lee C Y, Liew P M, Lee T Q. Pollen records from southern Taiwan: Implications for East Asian summer monsoon variation during the Holocene[J]. The Holocene, 2010, 20(1): 81-89.
[36] Ge Q S, Zheng J Y, Fang X Q, et al. Winter half-year temperature reconstruction for the middle and lower reaches of the Yellow River and Yangtze River, China, during the past 2000 years[J]. The Holocene, 2003, 13(6): 933-940.
[37] 徐蕊. 明清时期中国大陆的气候变化[J]. 首都师范大学学报(自然科学版),2009,30(6):67-70.

Xu Rui. The climate of Chinese continent change in Ming and Qing Dynasty[J]. Journal of Capital Normal University (Natural Science Edition), 2009, 30(6): 67-70.
[38] 温震军. 北方中东部地区明清时期的气候事件与气候变化及生态效应[D]. 西安:陕西师范大学,2018.

Wen Zhenjun. Climatic events, climatic changes and ecological effects in the Ming and Qing Dynasties in central and eastern northern China[D]. Xi’an: Shaanxi Normal University, 2018.
[39] 蒋佳. 两汉气候变化与农业的发展[D]. 长沙:湖南大学,2016.

Jiang Jia. Climate change and agricultural development in Han Dynasty[D]. Changsha: Hunan University, 2016.
[40] 李春艳. 战国末到西汉时期关中地区的气候变化探微[J]. 宝鸡文理学院学报(社会科学版),2011,31(1):29-34.

Li Chunyan. Climatic change from the late Warring States Period to the Xi Han[J]. Journal of Baoji University of Arts and Science (Social Sciences), 2011, 31(1): 29-34.
[41] 竺可桢. 中国近五千年来气候变迁的初步研究[J]. 考古学报,1972(1):15-38.

Zhu Kezhen. A preliminary study on climate change in China during the last five thousand years[J]. The Chinese Journal of Archaeology, 1972(1): 15-38.
[42] 万世明,李安春, Stuut J B W,等. 南海北部ODP1146站粒度揭示的近20Ma以来东亚季风演化[J]. 中国科学(D辑):地球科学,2007,37(6):761-770.

Wan Shiming, Li Anchun, Stuut J B W, et al. Grain-size records at ODP site 1146 from the northern South China Sea: Implications on the East Asian Monsoon evolution since 20Ma[J]. Science China (Seri. D): Earth Sciences, 2007, 37(6): 761-770.