[1] 朱茂旭,史晓宁,杨桂朋,等. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展,2011,26(4):355-364.

Zhu Maoxu, Shi Xiaoning, Yang Guipeng, et al. Relative contributions of various early diagenetic pathways to mineralization of organic matter in marine sediments: An overview[J]. Advances in Earth Science, 2011, 26(4): 355-364.
[2] Aller R C. Sedimentary diagenesis, depositional environments, and benthic fluxes[M]//Holland H D, Turekian K K. Treatise on geochemistry. 2nd ed. Oxford: Elsevier, 2014: 293-334.
[3] Berner R A. Early diagenesis: A theoretical approach[M]. Princeton, N.J.: Princeton University Press, 1980.
[4] Reeburgh W S. Rates of biogeochemical processes in anoxic sediments[J]. Annual Review of Earth and Planetary Sciences, 1983, 11: 269-298.
[5] Roberts A P, Weaver R. Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4)[J]. Earth and Planetary Science Letters, 2005, 231(3/4): 263-277.
[6] Canfield D E, Thamdrup B. Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away[J]. Geobiology, 2009, 7(4): 385-392.
[7] Haley B A, Klinkhammer G P, McManus J. Rare earth elements in pore waters of marine sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265-1279.
[8] Liu A Q, Tang D J, Shi X Y, et al. Growth mechanisms and environmental implications of carbonate concretions from the ~ 1.4 Ga Xiamaling Formation, North China[J]. Journal of Palaeogeography, 2019, 8: 20.
[9] 陈多福,陈先沛,陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报,2002,20(1):34-40.

Chen Duofu, Chen Xianpei, Chen Guangqian. Geology and geochemistry of cold seepage and venting-related carbonates[J]. Acta Sedimentologica Sinica, 2002, 20(1): 34-40.
[10] Campbell K A, Nelson C S, Alfaro A C, et al. Geological imprint of methane seepage on the seabed and biota of the convergent Hikurangi Margin, New Zealand: Box core and grab carbonate results[J]. Marine Geology, 2010, 272(1/2/3/4): 285-306.
[11] Rodriguez N M, Paull C K, Borowski W S. Zonation of authigenic carbonates within gas hydrate-bearing sedimentary sections on the Blake Ridge: Offshore southeastern North America[M]//Paull C K, Matsumoto R, Wallace P J, et al. Proceedings of the ocean drilling program, scientific results. College Station, TX, 2000.
[12] Rovere M, Rashed H, Pecchioni E, et al. Habitat mapping of cold seeps associated with authigenic mineralization (Paola Ridge, southern Tyrrhenian Sea): Combining seafloor backscatter with biogeochemistry signals[J]. Italian Journal of Geosciences, 2015, 134(1): 23-31.
[13] Tong H P, Feng D, Peckmann J, et al. Environments favoring dolomite formation at cold seeps: A case study from the Gulf of Mexico[J]. Chemical Geology, 2019, 518: 9-18.
[14] Lu Y, Sun X M, Xu H, et al. Formation of dolomite catalyzed by sulfate-driven anaerobic oxidation of methane: Mineralogical and geochemical evidence from the northern South China Sea[J]. American Mineralogist, 2018, 103(5): 720-734.
[15] Mozley P S, Wersin P. Isotopic composition of siderite as an indicator of depositional environment[J]. Geology, 1992, 20(9): 817-820.
[16] Wang Q X, Tong H P, Huang C Y, et al. Tracing fluid sources and formation conditions of Miocene hydrocarbon-seep carbonates in the central western Foothills, Central Taiwan[J]. Journal of Asian Earth Sciences, 2018, 168: 186-196.
[17] Huang C Y, Wu W Y, Chang C P, et al. Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan[J]. Tectonophysics, 1997, 281(1/2): 31-51.
[18] Huang C Y, Yuan P B, Tsao S J. Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis[J]. Geological Society of America Bulletin, 2006, 118(3/4): 274-288.
[19] Mouthereau F, Lacombe O, Deffontaines B, et al. Deformation history of the southwestern Taiwan foreland thrust belt: Insights from tectono-sedimentary analyses and balanced cross-sections[J]. Tectonophysics, 2001, 333(1/2): 293-322.
[20] 耿威,张训华,黄龙,等. 台湾及其附近海域区域地质特征与新构造运动[J]. 海洋地质与第四纪地质,2014,34(6):73-82.

Geng Wei, Zhang Xunhua, Huang Long, et al. Regional geological features and neotectonic movement of Taiwan inland and offshore areas[J]. Marine Geology & Quaternary Geology, 2014, 34(6): 73-82.
[21] 何春荪. 台湾地质概论—台湾地质图说明书[M]. 台北:台湾中央地质调查局,1986.

He Chunsun. An introduction to the geology of Taiwan, explanatory text of the geologic map of Taiwan[M]. Taipei: Central Geological Survey, 1986.
[22] Huang C Y. Oligocene and Eocene stratigrahpy of the Kuohsing area, central Taiwan[J]. Acta Geologica Taiwanica, 1986, 24: 281-318.
[23] Rongemaille E, Bayon G, Pierre C, et al. Rare earth elements in cold seep carbonates from the Niger delta[J]. Chemical Geology, 2011, 286(3/4): 196-206.
[24] McLennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.
[25] Feng D, Chen D F, Peckmann J. Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps[J]. Terra Nova, 2009, 21(1): 49-56.
[26] Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1/2): 37-55.
[27] Morad S, Felitsyn S. Identification of primary Ce-anomaly signatures in fossil biogenic apatite: Implication for the Cambrian oceanic anoxia and phosphogenesis[J]. Sedimentary Geology, 2001, 143(3/4): 259-264.
[28] 桑树勋,郑永飞,张华,等. 徐州地区下古生界碳酸盐岩的碳、氧同位素研究[J]. 岩石学报,2004,20(3):707-716.

Sang Shuxun, Zheng Yongfei, Zhang Hua, et al. Researches on carbon and oxygen stable isotopes of Lower Paleozoic carbonates in Xuzhou area[J]. Acta Petrologica Sinica, 2004, 20(3): 707-716.
[29] Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1/2/3/4): 27-49.
[30] Peckmann J, Thiel V. Carbon cycling at ancient methane-seeps[J]. Chemical Geology, 2004, 205(3/4): 443-467.
[31] Plet C, Grice K, Pagès A, et al. Microbially-mediated fossil-bearing carbonate concretions and their significance for palaeoenvironmental reconstructions: A multi-proxy organic and inorganic geochemical appraisal[J]. Chemical Geology, 2016, 426: 95-108.
[32] Ábalos B, Elorza J. Structural diagenesis of siderite layers in black shales (Albian black flysch, northern Spain)[J]. The Journal of Geology, 2012, 120(4): 405-429.
[33] Baker J C, Kassan J, Hamilton P J. Early diagenetic siderite as an indicator of depositional environment in the Triassic Rewan Group, southern Bowen Basin, eastern Australia[J]. Sedimentology, 1996, 43(1): 77-88.
[34] Leonowicz P. Origin of siderites from the Lower Jurassic Ciechocinek Formation from SW Poland[J]. Geological Quarterly, 2007, 51(1): 67-78.
[35] Rodrigues A G, De Ros L F, Neumann R, et al. Paleoenvironmental implications of early diagenetic siderites of the Paraíba do Sul Deltaic Complex, eastern Brazil[J]. Sedimentary Geology, 2015, 323: 15-30.
[36] Pe-Piper G, Piper D J W. Significance of the chemistry and morphology of diagenetic siderite in clastic rocks of the Mesozoic Scotian Basin[J]. Sedimentology, 2020, 67(2): 782-809.
[37] Irwin H, Curtis C, Coleman M. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments[J]. Nature, 1977, 269(5625): 209-213.
[38] Raiswell R, Fisher Q J. Rates of carbonate cementation associated with sulphate reduction in DSDP/ODP sediments: Implications for the formation of concretions[J]. Chemical Geology, 2004, 211(1/2): 71-85.
[39] Birgel D, Meister P, Lundberg R, et al. Methanogenesis produces strong 13C enrichment in stromatolites of Lagoa Salgada, Brazil: A modern analogue for Palaeo-/Neoproterozoic stromatolites?[J]. Geobiology, 2015, 13(3): 245-266.
[40] Krylov A, Khlystov O, Zemskaya T, et al. First discovery and formation process of authigenic siderite from gas hydrate-bearing mud volcanoes in fresh water: Lake Baikal, eastern Siberia[J]. Geophysical Research Letters, 2008, 35(5): L05405.
[41] Matsumoto R. Isotopically heavy oxygen-containing siderite derived from the decomposition of methane hydrate[J]. Geology, 1989, 17(8): 707-710.
[42] Pye K, Dickson J A D, Schiavon N, et al. Formation of siderite-Mg-calcite-iron sulphide concretions in intertidal marsh and sandflat sediments, north Norfolk, England[J]. Sedimentology, 1990, 37(2): 325-343.
[43] Franchi F, Rovere M, Gamberi F, et al. Authigenic minerals from the Paola Ridge (southern Tyrrhenian Sea): Evidences of episodic methane seepage[J]. Marine and Petroleum Geology, 2017, 86: 228-247.
[44] Nerma A, Mehadji A O, Munnecke A, et al. Carbonate concretions in Miocene mudrocks in NW Algeria: Types, geochemistry, and origins[J]. Facies, 2019, 65(2): 17.
[45] Carothers W W, Adami L H, Rosenbauer R J. Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite[J]. Geochimica et Cosmochimica Acta, 1988, 52(10): 2445-2450.
[46] Baumann L M F, Birgel D, Wagreich M, et al. 2016. Microbially-driven formation of Cenozoic siderite and calcite concretions from eastern Austria. Austrian Journal of Earth Sciences [J], 109(2): 211-232.
[47] 赵彦彦,李三忠,李达,等. 碳酸盐(岩)的稀土元素特征及其古环境指示意义[J]. 大地构造与成矿学,2019,43(1):141-167.

Zhao Yanyan, Li Sanzhong, Li Da, et al. Rare earth element geochemistry of carbonate and its paleoenvironmental implications[J]. Geotectonica et Metallogenia, 2019, 43(1): 141-167.
[48] German C R, Holliday B P, Elderfield H. Redox cycling of rare earth elements in the suboxic zone of the Black Sea[J]. Geochimica et Cosmochimica Acta, 1991, 55(12): 3553-3558.
[49] Bayon G, Birot D, Ruffine L, et al. Evidence for intense REE scavenging at cold seeps from the Niger Delta margin[J]. Earth and Planetary Science Letters, 2011, 312(3/4): 443-452.
[50] Himmler T, Haley B A, Torres M E, et al. Rare earth element geochemistry in cold-seep pore waters of Hydrate Ridge, northeast Pacific Ocean[J]. Geo-Marine Letters, 2013, 33(5): 369-379.
[51] Zhang J, Nozaki Y. Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(23): 4631-4644.
[52] Chen D F, Dong W Q, Qi L, et al. Possible REE constraints on the depositional and diagenetic environment of Doushantuo Formation phosphorites containing the earliest metazoan fauna[J]. Chemical Geology, 2003, 201(1/2): 103-118.
[53] Wright J, Schrader H, Holser W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 631-644.
[54] German C R, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: The ground rules[J]. Paleoceanography, 1990, 5(5): 823-833.
[55] Petrash D A, Bialik O M, Bontognali T R R, et al. Microbially catalyzed dolomite formation: From near-surface to burial[J]. Earth-Science Reviews, 2017, 171: 558-582.
[56] Coleman M L, Hedrick D B, Lovley D R, et al. Reduction of Fe(III) in sediments by sulphate-reducing bacteria[J]. Nature, 1993, 361(6411): 436-438.
[57] Gautier D L. Siderite concretions: Indicators of early diagenesis in the Gammon Shale (Cretaceous)[J]. Journal of Sedimentary Research, 1982, 52(3): 859-871.