[1] Bowker K A. Barnett Shale gas production, Fort Worth Basin: Issues and discussion[J]. AAPG Bulletin, 2007, 91(4): 523-533.
[2] Ross D J K, Bustin R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927.
[3] Bowker K A. Recent developments of the Barnett Shale play, Fort Worth Basin[J]. West Texas Geological Society Bulletin, 2003, 42(6): 4-11.
[4] Papazis P K. Petrographic characterization of the barnett shale, Fort Worth Basin, Texas[D]. Texas: University of Texas, 2005.
[5] Boles J R, Franks S G. Clay diagenesis in Wilcox sandstones of Southwest Texas: Implications of smectite diagenesis on sandstone cementation[J]. Journal of Sedimentary Research, 1979, 49(1): 55-70.
[6] 何发岐,朱彤. 陆相页岩气突破和建产的有利目标:以四川盆地下侏罗统为例[J]. 石油实验地质,2012,34(3):246-251.

He Faqi, Zhu Tong. Favorable targets of breakthrough and built-up of shale gas in continental facies in Lower Jurassic, Sichuan Basin[J]. Petroleum Geology & Experiment, 2012, 34(3): 246-251.
[7] 李英强,何登发. 四川盆地及邻区早侏罗世构造—沉积环境与原型盆地演化[J]. 石油学报,2014,35(2):219-232.

Li Yingqiang, He Dengfa. Evolution of tectonic-depositional environment and prototype basins of the Early Jurassic in Sichuan Basin and adjacent areas[J]. Acta Petrolei Sinica, 2014, 35(2): 219-232.
[8] 邹才能,杨智,王红岩,等. “进源找油”:论四川盆地非常规陆相大型页岩油气田[J]. 地质学报,2019,93(7):1551-1562.

Zou Caineng, Yang Zhi, Wang Hongyan, et al. "Exploring petroleum inside source kitchen": Jurassic unconventional continental giant shale oil & gas field in Sichuan Basin, China[J]. Acta Geologica Sinica, 2019, 93(7): 1551-1562.
[9] 朱彤,包书景,王烽. 四川盆地陆相页岩气形成条件及勘探开发前景[J]. 天然气工业,2012,32(9):16-21.

Zhu Tong, Bao Shujing, Wang Feng. Pooling conditions of non-marine shale gas in the Sichuan Basin and its exploration and development prospect[J]. Natural Gas Industry, 2012, 32(9): 16-21.
[10] 张本琪,余宏忠,姜在兴,等. 应用阴极发光技术研究母岩性质及成岩环境[J]. 石油勘探与开发,2003,30(3):117-120.

Zhang Benqi, Yu Hongzhong, Jiang Zaixing, et al. Characteristics and diagenetic environments of source rocks by cathodoluminescence[J]. Petroleum Exploration and Development, 2003, 30(3): 117-120.
[11] 程峰,于少勇,邢德敬,等. 阴极发光技术在储层研究中的应用[J]. 断块油气田,1998,5(6):17-19.

Cheng Feng, Yu Shaoyong, Xing Dejing, et al. The application of cathodoluminescence technology in studying oil and gas reservoirs[J]. Fault-Block Oil & Gas Field, 1998, 5(6): 17-19.
[12] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific Publications, 1985: 117-140.
[13] 赵建华,金之钧,金振奎,等. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究[J]. 天然气地球科学,2016,27(2):377-386.

Zhao Jianhua, Jin Zhijun, Jin Zhenkui, et al. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(2): 377-386.
[14] Thyberg B, Jahren J, Winje T, et al. Quartz cementation in Late Cretaceous mudstones, northern North Sea: Changes in rock properties due to dissolution of smectite and precipitation of micro-quartz crystals[J]. Marine and Petroleum Geology, 2010, 27(8): 1752-1764.
[15] Metwally Y M, Chesnokov E M. Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale[J]. Applied Clay Science, 2012, 55: 138-150.
[16] 罗文军,徐伟,朱正平,等. 四川盆地高石梯地区震旦系灯影组四段硅质岩成因及地质意义[J]. 天然气勘探与开发,2019,42(3):1-9.

Luo Wenjun, Xu Wei, Zhu Zhengping, et al. Origin of siliceous rocks in Sinian Dengying 4 member, Gaoshiti area, Sichuan Basin[J]. Natural Gas Exploration and Development, 2019, 42(3): 1-9.
[17] 杨水源,姚静. 安徽巢湖平顶山中二叠统孤峰组硅质岩的地球化学特征及成因[J]. 高校地质学报,2008,14(1):39-48.

Yang Shuiyuan, Yao Jing. Geochemistry and origin of siliceous rocks from the Gufeng Formation of Middle Permian in the Pingdingshan area, Chaohu region, Anhui province[J]. Geological Journal of China Universities, 2008, 14(1): 39-48.
[18] 罗龙,孟万斌,冯明石,等. 致密砂岩中硅质胶结物的硅质来源及其对储层的影响:以川西坳陷新场构造带须家河组二段为例[J]. 天然气地球科学,2015,26(3):435-443.

Luo Long, Meng Wanbin, Feng Mingshi, et al. Selica sources of quartz cements and its effects on the reservoir in tight sandstones: A case study on the 2th member of the Xujiahe Formation in Xinchang structural belt, western Sichuan Depression[J]. Natural Gas Geoscience, 2015, 26(3): 435-443.
[19] 彭军,夏文杰,伊海生. 湘西晚前寒武纪层状硅质岩的热水沉积地球化学标志及其环境意义[J]. 岩相古地理,1999,19(2):29-37.

Peng Jun, Xia Wenjie, Yi Haisheng. Geochemical characteristics and depositional environments of the Late Precambrian bedded siliceous rocks in western Hunan[J]. Sedimentary Facies and Palaeogeography, 1999, 19(2): 29-37.
[20] Schieber J, Krinsley D, Riciputi L. Diagenetic origin of quartz silt in mudstones and implications for silica cycling[J]. Nature, 2000, 406(6799): 981-985.
[21] Veizer J, Demovic R. Strontium as a tool in facies analysis[J]. Journal of Sedimentary Research, 1974, 44(1): 93-115.
[22] Jarvis I, Murphy A M, Gale A S. Geochemistry of pelagic and hemipelagic carbonates: Criteria for identifying systems tracts and sea-level change[J]. Journal of the Geological Society, 2001, 158(4): 685-696.
[23] 田洋,赵小明,王令占,等. 重庆石柱二叠纪栖霞组地球化学特征及其环境意义[J]. 沉积学报,2014,32(6):1035-1045.

Tian Yang, Zhao Xiaoming, Wang Lingzhan, et al. Geochemical characteristics and its paleoenvironmental implication of Permian Qixia Formation in Shizhu, Chongqing[J]. Acta Sedimentologica Sinica, 2014, 32(6): 1035-1045.
[24] Magara K. Compaction and fluid migration: Practical petroleum geology[M]. Amsterdam: Elsevier Scientific Pub. Co., 1978.
[25] Luo X R, Wang Z M, Zhang L Q, et al. Overpressure generation and evolution in a compressional tectonic setting, the southern margin of Junggar Basin, northwestern China[J]. AAPG Bulletin, 2007, 91(8): 1123-1139.
[26] 陈绥祖,曾恕蓉. 封存箱与上三叠统天然气成藏模式[J]. 天然气工业,1994,14(5):24-28,95.

Chen Suizu, Zeng Shurong. Mothballed box and gas pool-formed mode of Upper Triassic series[J]. Natural Gas Industry, 1994, 14(5): 24-28, 95.
[27] 张健,刘树根,冉波,等. 异常高压与页岩气保存[J]. 成都理工大学学报(自然科学版),2016,43(2):177-187.

Zhang Jian, Liu Shugen, Ran Bo, et al. Abnormal overpressure and shale gas preservation[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2016, 43(2): 177-187.
[28] van Groos A F K, Guggenheim S. High-pressure differential thermal analysis (HP-DTA) of the dehydroxylation of Na-rich montmorillonite and K-exchanged montmorillonite[J]. American Mineralogist, 1987, 72(11/12): 1170-1175.