[1] Najman Y. The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins[J]. Earth-Science Reviews, 2006, 74(1/2): 1-72.
[2] Hu X M, Garzanti E, Wang J G, et al. The timing of India-Asia collision onset - Facts, theories, controversies[J]. Earth-Science Reviews, 2016, 160: 264-299.
[3] Yan Z, Fu C L, Wang Z Q, et al. Late Paleozoic subduction-accretion along the southern margin of the North Qinling terrane, central China: Evidence from zircon U-Pb dating and geochemistry of the Wuguan Complex[J]. Gondwana Research, 2016, 30: 97-111.
[4] 闫臻,王宗起,付长垒,等. 混杂岩基本特征与专题地质填图[J]. 地质通报,2018,37(2/3):167-191.

Yan Zhen, Wang Zongqi, Fu Changlei, et al. Characteristics and thematic geological mapping of mélanges[J]. Geological Bulletin of China, 2018, 37(2/3): 167-191.
[5] 闫臻,王宗起,闫全人,等. 造山带汇聚板块边缘沉积盆地的鉴别与恢复[J]. 岩石学报,2018,34(7):1943-1958.

Yan Zhen, Wang Zongqi, Yan Quanren, et al. Identification and reconstruction of tectonic archetype of the sedimentary basin within the orogenic belt developed along convergent margin[J]. Acta Petrologica Sinica, 2018, 34(7): 1943-1958.
[6] 李继亮,孙枢,郝杰,等. 碰撞造山带的碰撞事件时限的确定[J]. 岩石学报,1999,15(2):315-320.

Li Jiliang, Sun Shu, Hao Jie, et al. Time limit of collision event of collision orogens[J]. Acta Petrologica Sinica, 1999, 15(2): 315-320.
[7] 胡修棉,王建刚,安慰,等. 利用沉积记录精确约束印度—亚洲大陆碰撞时间与过程[J]. 中国科学(D辑):地球科学,2017,47(3):261-283.

Hu Xiumian, Wang Jiangang, An wei. et al. Constraining the timing of the India-Asia continental collision by the sedimentary record[J]. Science China (Seri.D): Earth Sciences, 2017, 47(3): 261-283.
[8] 侯泉林,郭谦谦,方爱民. 造山带研究中有关复理石和磨拉石的几个问题[J]. 岩石学报,2018,34(7):1885-1896.

Hou Quanlin, Guo Qianqian, Fang Aimin. Discussions on some basic problems in the research of orogenic belts concerning on flysch and molasse[J]. Acta Petrologica Sinica, 2018, 34(7): 1885-1896.
[9] Dickinson W S, Suczek C A. Plate tectonics and sandstone compositions[J]. AAPG Bulletin, 1979, 63(12): 2164-2182.
[10] Dickinson W R. Interpreting provenance relations from detrital modes of sandstones[M]//Zuffa G G. Provenance of Arenites. Dordrecht: Springer, 1985: 333-361.
[11] Sinclair H D, Coakley B J, Allen P A, et al. Simulation of foreland basin stratigraphy using a diffusion model of mountain belt uplift and erosion: An example from the central Alps, Switzerland[J]. Tectonics, 1991, 10(3): 599-620.
[12] Decelles P G. Sedimentation in a tectonically partitioned, nonmarine foreland basin: The Lower Cretaceous Kootenai Formation, southwestern Montana[J]. Geological Society of America Bulletin, 1986, 97(8): 911-931.
[13] DeCelles P G, Giles K A. Foreland basin systems[J]. Basin Research, 1996, 8(2): 105-123.
[14] Henderson A L, Najman Y, Parrish R, et al. Geology of the Cenozoic Indus Basin sedimentary rocks: Paleoenvironmental interpretation of sedimentation from the western Himalaya during the early phases of India-Eurasia collision[J]. Tectonics, 2010, 29(6): TC6015.
[15] Garzanti E, Resentini A, Vezzoli G, et al. Forward compositional modelling of Alpine orogenic sediments[J]. Sedimentary Geology, 2012, 280: 149-164.
[16] Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40(10): 875-878.
[17] Lai W, Hu X M, Eduardo G, et al. Initial growth of the northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma)[J]. GSA Bulletin, 2019, doi:  10.1130/B35124.1.
[18] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
[19] 潘桂棠,李兴振,王立全,等. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报,2002,21(11):701-707.

Pan Guitang, Li Xingzhen, Wang Liquan, et al. Preliminary division of tectonic units of the Qinghai-Tibet Plateau and its adjacent regions[J]. Geological Bulletin of China, 2002, 21(11): 701-707.
[20] Allégre C J, Courtillot V, Tapponnier P, et al. Structure and evolution of the Himalaya-Tibet orogenic belt[J]. Nature, 1984, 307(5946): 17-22.
[21] Zhu D C, Zhao Z D, Niu Y L, et al. The origin and Pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4): 1429-1454.
[22] Murphy M A, Yin A, Harrison T M, et al. Did the Indo-Asian collision alone create the Tibetan plateau?[J]. Geology, 1997, 25(8): 719-722.
[23] Najman Y, Appel E, Boudagher-Fadel M, et al. Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints[J]. Journal of Geophysical Research, 2010, 115(B12): B12416.
[24] Hu P Y, Zhai Q G, Jahn B M, et al. Late Early Cretaceous magmatic rocks (118-113 Ma) in the middle segment of the Bangong-Nujiang suture zone, Tibetan Plateau: Evidence of lithospheric delamination[J]. Gondwana Research, 2017, 44: 116-138.
[25] Girardeau J, Marcoux J, Allègre C J, et al. Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang Suture Zone, Tibet[J]. Nature, 1984, 307(5964): 27-31.
[26] Schneider W, Mattern F, Wang P J, et al. Tectonic and sedimentary basin evolution of the eastern Bangong-Nujiang zone (Tibet): A reading cycle[J]. International Journal of Earth Sciences, 2003, 92(2): 228-254.
[27] Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119(7/8): 917-933.
[28] Leier A L, DeCelles P G, Kapp P, et al. The Takena Formation of the Lhasa terrane, southern Tibet: The record of a Late Cretaceous retroarc foreland basin[J]. Geological Society of America Bulletin, 2007, 119(1/2): 31-48.
[29] Chen S S, Shi R D, Gong X H, et al. A syn-collisional model for Early Cretaceous magmatism in the northern and central Lhasa subterranes[J]. Gondwana Research, 2017, 41: 93-109.
[30] Ma A L, Hu X M, Garzanti E, et al. Sedimentary and tectonic evolution of the southern Qiangtang Basin: Implications for the Lhasa-Qiangtang collision timing[J]. Journal of Geophysical Research, 2017, 122(7): 4790-4813.
[31] Liu D L, Shi R D, Ding L, et al. Late Cretaceous transition from subduction to collision along the Bangong-Nujiang Tethys: New volcanic constraints from central Tibet[J]. Lithos, 2018, 296-299: 452-470.
[32] Fan J J, Li C, Xie C M, et al. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet: Constraints on the timing of closure of the Banggong-Nujiang Ocean[J]. Lithos, 2015, 227: 148-160.
[33] Fan J J, Li C, Xu J X, et al. Petrology, geochemistry, and geological significance of the Nadong ocean island, Banggongco-Nujiang suture, Tibetan Plateau[J]. International Geology Review, 2014, 56(8): 915-928.
[34] Fan J J, Li C, Wang M, et al. Reconstructing in space and time the closure of the middle and western segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau[J]. International Journal of Earth Sciences, 2018, 107(1): 231-249.
[35] 雍永源,贾宝江. 板块剪式汇聚加地体拼贴:中特提斯消亡的新模式[J]. 沉积与特提斯地质,2000,20(1):85-89.

Yong Yongyuan, Jia Baojiang. Shear convergence of plates and suturing of terranes: A new model for the comsumption of the Meso-Tethys[J]. Sedimentary Geology and Tethyan Geology, 2000, 20(1): 85-89.
[36] Sui Q L, Wang Q, Zhu D C, et al. Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet: Implications for the magmatic origin and crustal growth in a continent-continent collision zone[J]. Lithos, 2013, 168-169: 144-159.
[37] Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245: 7-17.
[38] Chen Y, Zhu D C, Zhao Z D, et al. Slab breakoff triggered ca. 113 Ma magmatism around Xainza area of the Lhasa Terrane, Tibet[J]. Gondwana Research, 2014, 26(2): 449-463.
[39] 潘桂棠,肖庆辉,陆松年,等. 大地构造相的定义、划分、特征及其鉴别标志[J]. 地质通报,2008,27(10):1613-1637.

Pan Guitang, Xiao Qinghui, Lu Songnian, et al. Definition, classification, characteristics and diagnostic indications of tectonic facies[J]. Geological Bulletin of China, 2008, 27(10): 1613-1637.
[40] 潘桂棠,肖庆辉,陆松年,等. 中国大地构造单元划分[J]. 中国地质,2009,36(1):1-28.

Pan Guitang, Xiao Qinghui, Lu Songnian, et al. Subdivision of tectonic units in China[J]. Geology in China, 2009, 36(1): 1-28.
[41] 李才. 龙木错—双湖—澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J]. 长春地质学院学报,1987,17(2):155-166.

Li Cai. The Longmucuo-Shuanghu-Lancangjiang Plate suture and the north boundary of distribution of Gondwana facies Permo-Carboniferous system in northern Xizang, China[J]. Journal of Changchun College of Geology, 1987, 17(2): 155-166.
[42] 李才,翟庆国,董永胜,等. 冈瓦纳大陆北缘早期的洋壳信息:来自青藏高原羌塘中部早古生代蛇绿岩的依据[J]. 地质通报,2008,27(10):1605-1612.

Li Cai, Zhai Qingguo, Dong Yongsheng, et al. Oceanic crust on the northern margin of Gondwana: Evidence from Early Paleozoic ophiolite in central Qiangtang, Qinghai-Tibet Plateau[J]. Geological Bulletin of China, 2008, 27(10): 1605-1612.
[43] 李才. 青藏高原龙木错—双湖—澜沧江板块缝合带研究二十年[J]. 地质论评,2008,54(1):105-119.

Li Cai. A review on 20 years’ study of the Longmu Co-Shuanghu-Lancang River suture zone in Qinghai-Xizang(Tibet) Plateau[J]. Geological Review, 2008, 54(1): 105-119.
[44] Zhai Q G, Jahn B M, Wang J, et al. Oldest Paleo-Tethyan ophiolitic mélange in the Tibetan Plateau[J]. Geological Society of America Bulletin, 2016, 128(3/4): 355-373.
[45] Zhu Z C, Zhai Q G, Hu P Y, et al. Closure of the Bangong-Nujiang tethyan ocean in the central Tibet: Results from the provenance of the Duoni Formation[J]. Journal of Sedimentary Research, 2019, 89: 1039-1054.
[46] Tang Y, Zhai Q G, Hu P Y, et al. Rodingite from the Beila ophiolite in the Bangong-Nujiang suture zone, northern Tibet: New insights into the formation of ophiolite-related rodingite[J]. Lithos, 2018, 316-317: 33-47.
[47] Zhong Y, Liu W L, Xia B, et al. Geochemistry and geochronology of the Mesozoic Lanong ophiolitic mélange, northern Tibet: Implications for petrogenesis and tectonic evolution[J]. Lithos, 2017, 292-293: 111-131.
[48] 西藏自治区地质矿产局. 西藏自治区区域地质志[M]. 北京:地质出版社,1993:1-140.

Bureau of Geology and Mineral Resources of Xizang Autonomous Region (BGMRXAR). Regional geology of Xizang (Tibet) autonomous region[M]. Beijing: Geological Publishing House, 1993: 1-140.
[49] 潘桂棠,莫宣学,侯增谦,等. 冈底斯造山带的时空结构及演化[J]. 岩石学报,2006, 22(3):521-533.

Pan Guitang, Mo Xuanxue, Hou Zengqian, et al. Spatial-temporal framework of the Gangdese orogenic belt and its evolution[J]. Acta Petrologica Sinica2006, 22(3): 521-533.
[50] Coulon C, Maluski H, Bollinger C, et al. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating, petrological characteristics and geodynamical significance[J]. Earth and Planetary Science Letters, 1986, 79(3/4): 281-302.
[51] Pearce J A, Houjun M. Volcanic rocks of the 1985 Tibet Geotraverse: Lhasa to Golmud[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1988, 327(1594): 169-201.
[52] Kapp P, Yin A, Harrison T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117(7/8): 865-878.
[53] 李世民. 西藏班公湖—怒江特提斯洋的俯冲极性和过程:岩浆岩和碎屑锆石记录[D]. 北京:中国地质大学(北京),2018.

Li Shimin. Subduction polarity and processes of the Bangong-Nujiang Tethys: Insights from igneous rocks and detrial zircons[D]. Beijing: China University of Geosciences (Beijing), 2018.
[54] Fu C L, Yan Z, Wang Z Q, et al. Lajishankou ophiolite Complex: Implications for Paleozoic multiple accretionary and collisional events in the South Qilian belt[J]. Tectonics, 2018, 37(5): 1321-1346.
[55] 李璞. 西藏东部地质的初步认识[J]. 科学通报,1955(7):62-71,52.

Li Pu. Preliminary geological understanding in eastern Tibet[J]. Chinese Science Bulletin, 1955(7): 62-71, 52.
[56] 杨遵仪,聂泽同,吴顺宝,等. 西藏阿里地区白垩纪固着蛤类及其地质意义[J]. 地质学报,1982,56(4):293-301.

Yang Zunyi, Nie Zetong, Wu Shunbao, et al. Cretaceous rudists from Ngari, Xizang (Tibet), Autonomous Region, China and their geologic significance[J]. Acta Geological Sinica, 1982, 56(4): 293-301.
[57] Rao X, Skelton P W, Sha J G, et al. Mid-Cretaceous rudists (Bivalvia: Hippuritida) from the Langshan Formation, Lhasa block, Tibet[J]. Papers in Palaeontology, 2015, 1(4): 401-424.
[58] 王冠民. 西藏措勤盆地郎山组沉积特征及其石油地质条件[J]. 地球学报,2001,22(1):39-42.

Wang Guanmin. Depositional features and petroleum geological conditions of Langshan Formation in Coqen Basin, Tibet[J]. Acta Geoscientia Sinica, 2001, 22(1): 39-42.
[59] Zhang K J, Xia B D, Wang G M, et al. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China[J]. Geological Society of America Bulletin, 2004, 116(9/10): 1202-1222.
[60] 孙高远,胡修棉. 拉萨地体中部上白垩统达雄组的建立及构造隆升意义[J]. 地质学报, 2017,91(12):2623-2637.

Sun Gaoyuan, Hu Xiumian. The establishment of the Upper Cretaceous Daxiong Formation in the central Lhasa Terrane and its implications for tectonic uplifting[J]. Acta Geologica Sinica, 2017, 91(12): 2623-2637.
[61] Miall A D. A review of the braided-river depositional environment[J]. Earth-Science Reviews, 1977, 13(1): 1-62.
[62] Xu H, Liu Y Q, Kuang H W, et al. Sedimentary response to the intracontinental orogenic process: Insight from the anatomy of a small Mesozoic basin in western Yanshan, northern North China[J]. International Geology Review, 2016, 58(12): 1528-1556.
[63] Smith N D. Sedimentology and Bar Formation in the Upper Kicking Horse River, a braided outwash stream[J]. The Journal of Geology, 1974, 82(2): 205-223.
[64] Miall A D. Lithofacies types and vertical profile models in braided river deposits: A summary[M]//Miall A D. Fluvial Sedimentology. Calgary: Canadian Society of Petroleum Geologists Memoir, 1978: 597-604.
[65] Postma G. Mass-flow conglomerates in a submarine canyon: Abrioja Fan-Delta, Pliocene, southeast Spain[M]//Koster E H, Steel R J. Sedimentology of Gravels and Conglomerates. Calgary: Canadian Society of Petroleum Geologists, 1984: 237-258.
[66] Dickinson W R. Interpreting detrital modes of graywacke and arkose[J]. Journal of Sedimentary Research, 1970, 40(2): 695-707.
[67] Yan Z, Guo X Q, Fu C L, et al. Detrital heavy mineral constraints on the Triassic Tectonic Evolution of the West Qinling Terrane, NW China: Implications for understanding subduction of the Paleotethyan Ocean[J]. The Journal of Geology, 2014, 122(5): 591-608.
[68] Morton A C, Meinhold G, Howard J P, et al. A heavy mineral study of sandstones from the eastern Murzuq Basin, Libya: Constraints on provenance and stratigraphic correlation[J]. Journal of African Earth Sciences, 2011, 61(4): 308-330.
[69] Zhai Q G, Zhang R Y, Jahn B M, et al. Triassic eclogites from central Qiangtang, northern Tibet, China: Petrology, geochronology and metamorphic P-T path[J]. Lithos, 2011, 125(1/2): 173-189.
[70] Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255.
[71] 侯可军,李延河,田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质,2009,28(4):481-492.

Hou Kejun, Li Yanhe, Tian Yourong. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS[J]. Mineral Deposits, 2009, 28(4): 481-492.
[72] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
[73] Ludwig K R. User’s manual for isoplot/Ex, Version 3.00, a geochronological toolkit for microsoft excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003: 1-70.
[74] Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62.
[75] 康志强,许继峰,王保弟,等. 拉萨地块北部白垩纪多尼组火山岩的地球化学:形成的构造环境[J]. 地球科学——中国地质大学学报,2009,34(1):89-104.

Kang Zhiqiang, Xu Jifeng, Wang Baodi, et al. Geochemistry of Cretaceous volcanic rocks of Duoni Formation in northern Lhasa block: Discussion of tectonic setting[J]. Earth Science—Journal of China University of Geosciences, 2009, 34(1): 89-104.
[76] 白志达,徐德斌,陈梦军,等. 西藏安多地区粗面岩的特征及其锆石SHRIMP U-Pb定年[J]. 地质通报,2009,28(9):1229-1235.

Bai Zhida, Xu Debin, Chen Mengjun, et al. Characteristics and zircon SHRIMP U-Pb dating of the Amduo trachyte, Tibet, China[J]. Geological Bulletin of China, 2009, 28(9): 1229-1235.
[77] Fan J J, Li C, Sun Z M, et al. Early Cretaceous MORB-type basalt and A-type rhyolite in northern Tibet: Evidence for ridge subduction in the Bangong-Nujiang Tethyan Ocean[J]. Journal of Asian Earth Sciences, 2018, 154: 187-201.
[78] Otofuji Y I, Mu C L, Tanaka K, et al. Spatial gap between Lhasa and Qiangtang blocks inferred from Middle Jurassic to Cretaceous paleomagnetic data[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 581-593.
[79] Chen W W, Zhang S H, Ding J K, et al. Combined paleomagnetic and geochronological study on Cretaceous strata of the Qiangtang terrane, central Tibet[J]. Gondwana Research, 2017, 41: 373-389.
[80] Li Z Y, Ding L, Song P P, et al. Paleomagnetic constraints on the paleolatitude of the Lhasa block during the Early Cretaceous: Implications for the onset of India-Asia collision and latitudinal shortening estimates across Tibet and stable Asia[J]. Gondwana Research, 2017, 41: 352-372.