[1] Sullivan R, Banfield D, Bell III J F, et al. Aeolian processes at the Mars exploration rover Meridiani Planum landing site[J]. Nature, 2005, 436(7047): 58-61.
[2] Radebaugh J. Dunes on Saturn’s moon Titan as revealed by the Cassini Mission[J]. Aeolian Research, 2013, 11: 23-41.
[3] Kreslavsly M A, Bondarenko N V. Aeolian sand transport and aeolian deposits on Venus: A review[J]. Aeolian Research, 2017, 26: 29-46.
[4] Ehrenberg C G. The sirocco dust that fell at Genoa on the 16th May 1846[J]. Quarterly Journal of the Geological Society of London, 1847, 3: 25-26.
[5] Blake W P. On the grooving and polishing of hard rocks and minerals by dry sand[J]. American Journal of Science and Arts (1820-1879), 1855, 20(59): 178.
[6] Bagnold R A. The physics of blown sand and desert dunes[M]. London: Methuen, 1941: 1-265.
[7] Glennie K W. Desert sedimentary environments[M]. Amsterdam: Elsevier, 1970: 1-222.
[8] Wilson I G. Desert sandflow basins and a model for the development of ergs[J]. The Geographical Journal, 1971, 137(2): 180-199.
[9] Wilson I G. Ergs[J]. Sedimentary Geology, 1973, 10(2): 77-106.
[10] McKee E D, Douglass J R, Rittenhouse S. Deformation of lee-side laminae in eolian dunes[J]. GSA Bulletin, 1971, 82(2): 359-378.
[11] McKee E D, Bigarella J J. Sedimentary structures in dunes[M]// McKee E D. A study of global sand seas. Virginia: United States Geological Survey, Professional Paper, Reston, 1979: 83-134.
[12] McKee E D. Sedimentary structures in dunes of the Namib Desert, south west Africa[M]. Boulder: The Geological Society of America, 1982: 1-64.
[13] Rubin D M, Hunter R E. Bedform climbing in theory and nature[J]. Sedimentology, 1982, 29(1): 121-138.
[14] Rubin D M, Hunter R E. Reconstructing bedform assemblages from compound crossbedding[J]. Developments in Sedimentology, 1983, 38: 407-427.
[15] Kocurek G. Interpretation of ancient eolian sand dunes[J]. Annual Review of Earth and Planetary Sciences, 1991, 19: 43-75.
[16] Kocurek G. Aeolian system response to external forcing factors-a sequence stratigraphic view of the Saharan region[M]//Alsharhan A S, Glennie K W, Whittle G L. Quaternary deserts and climatic change. London: CRC Press, 1998: 327-337.
[17] Bristow C, Pugh J, Goodall T. Internal structure of aeolian dunes in Abu Dhabi determined using ground‐penetrating radar[J]. Sedimentology, 1996, 43(6): 995-1003.
[18] Bristow C S, Bailey S D, Lancaster N. The sedimentary structure of linear sand dunes[J]. Nature, 2000, 406(6791): 56-59.
[19] Mountney N P. Eolian facies models[M]//Posamentier H W, Walker R G. Facies models revisited. Tulsa: Society for Sedimentary Geology, 2006: 19-83.
[20] Mountney N P. A stratigraphic model to account for complexity in aeolian dune and interdune successions[J]. Sedimentology, 2012, 59(3): 964-989.
[21] Rodríguez‐López J P, Clemmensen L B, Lancaster N, et al. Archean to recent aeolian sand systems and their sedimentary record: Current understanding and future prospects[J]. Sedimentology, 2014, 61(6): 1487-1534.
[22] Lancaster N, Baas A C W, Sherman D J. Aeolian geomorphology: Introduction[M]//Shroder J. Treatise on geomorphology. London: Academic Press, 2013: 1-6.
[23] Livingstone I, Warren A. Aeolian geomorphology: A new introduction[M]. Hoboken: John Wiley & Sons, Inc, 2019: 1-318.
[24] Parrish J T, Rasbury E T, Chan M A, et al. Earliest Jurassic U-Pb ages from carbonate deposits in the Navajo sandstone, southeastern Utah, USA[J]. Geology, 2019, 47(11): 1015-1019.
[25] 刘东生. 黄土与环境[M]. 北京:科学出版社,1985:1-481.

Liu Tungsheng. Loess and environment[M]. Beijing: Science Press, 1985: 1-481.
[26] 董光荣,李森,李保生,等. 中国沙漠形成演化的初步研究[J]. 中国沙漠,1991,11(4):23-32.

Dong Guangrong, Li Sen, Li Baosheng, et al. A preliminary study on the formation and evolution of deserts in China[J]. Journal of Desert Research, 1991, 11(4): 23-32.
[27] 董光荣,王贵勇,陈惠忠,等. 中国沙漠形成、演化与青藏高原隆升的关系[C]//青藏高原与全球变化研讨会论文集. 北京:中国青藏高原研究会,1994:13-29.

Dong Guangrong, Wang Guiyong, Chen Huizhong, et al. The relationship between the formation and evolution of desert in China and the uplift of Qinghai-Tibet Plateau[C]//Collection of research papers on Qinghai-Tibet Plateau in China. Beijing: Meteorological Press, 1994: 13-29.
[28] 江新胜,李玉文. 中国中东部白垩纪沙漠的时空分布及其气候意义[J]. 岩相古地理,1996,16(2):42-51.

Jiang Xinsheng, Li Yuwen. Spato-temporal distribution of the Cretaceous deserts in central and eastern China and its climatic significance[J]. Sedimentary Facies and Palaeogeography, 1996, 16(2): 42-51.
[29] 江新胜,潘忠习,傅清平. 四川盆地白垩纪沙漠风向变化规律及其意义[J]. 岩相古地理,1999,19(1):1-11.

Jiang Xinsheng, Pan Zhongxi, Fu Qingping. The variations of palaeowind direction of the Cretaceous desert in the Sichuan Basin and their significance[J]. Sedimentary Facies and Palaeogeography, 1999, 19(1): 1-11.
[30] 潘忠习,江新胜,傅清平. 四川盆地白垩纪沙漠沉积磁组构特征及其古风向意义[J]. 岩相古地理,1999,19(1):12-19.

Pan Zhongxi, Jiang Xinsheng, Fu Qingping. The magnetic fabrics and palaeowind direction significance of the Cretaceous desert sediments in the Sichuan Basin[J]. Sedimentary Facies and Palaeogeography, 1999, 19(1): 12-19.
[31] 江新胜,潘忠习,付清平. 白垩纪时期东亚大气环流格局初探[J]. 中国科学(D辑):地球科学,2000,30(5):526-532.

Jiang Xinsheng, Pan Zhongxi, Fu Qingping. A preliminary study on the atmospheric circulation pattern in East Asia during the Cretaceous period[J]. Science China (Seri. D): Earth Sciences, 2000, 30(5): 526-532.
[32] 江新胜,潘忠习,付清平. 鄂尔多斯盆地早白垩世沙漠古风向变化规律及其气候意义[J]. 中国科学(D辑):地球科学,2000,30(2):195-201.

Jiang Xinsheng, Pan Zhongxi, Fu Qingping. Regularity of paleowind directions of the Early Cretaceous desert in Ordos Basin and climatic significance[J]. Science China (Seri. D): Earth Sciences, 2000, 30(2): 195-201.
[33] 江新胜,徐金沙,潘忠习. 鄂尔多斯盆地白垩纪沙漠石英沙颗粒表面特征[J]. 沉积学报,2003,21(3):416-422.

Jiang Xinsheng, Xu Jinsha, Pan Zhongxi. Microscopic features on quartz sand grain surface in the Cretaceous desert of Ordos Basin[J]. Acta Sedimentologica Sinica, 2003, 21(3): 416-422.
[34] 江新胜,徐金沙,潘忠习. 四川盆地白垩纪沙漠石英沙颗粒表面特征[J]. 沉积与特提斯地质,2003,23(1):60-68.

Jiang Xinsheng, Xu Jinsha, Pan Zhongxi. The surface features of the quartz sand grains from the Cretaceous desert in the Sichuan Basin[J]. Sedimentary Geology and Tethyan Geology, 2003, 23(1): 60-68.
[35] 江新胜,潘忠习,谢渊,等. 鄂尔多斯盆地白垩纪沙漠旋回、风向和水循环变化:白垩纪气候非均一性的证据[J]. 中国科学(D辑):地球科学,2004,34(7):649-657.

Jiang Xinsheng, Pan Zhongxi, Xie Yuan, et al. Cretaceous desert cycles, wind direction and hydrologic cycle variations in Ordos Basin: Evidence for Cretaceous climatic unequability[J]. Science China (Seri. D): Earth Sciences, 2004, 34(7): 649-657.
[36] 江新胜,潘忠习,徐金沙,等. 江西信江盆地晚白垩世风成沙丘的发现及其古风向[J]. 地质通报,2006,25(7):833-838.

Jiang Xinsheng, Pan Zhongxi, Xu Jinsha, et al. Late Cretaceous eolian dunes and wind directions in Xinjiang Basin, Jiangxi province, China[J]. Geological Bulletin of China, 2006, 25(7): 833-838.
[37] 江新胜,蔡习尧,潘忠习,等. 塔里木盆地西南部早白垩世风成沙丘古风向测量与古风带恢复[J]. 沉积与特提斯地质,2009,29(4):1-4.

Jiang Xinsheng, Cai Xiyao, Pan Zhongxi, et al. Palaeowind direction measurements and palaeowind belt reconstruction of the Early Cretaceous eolian dunes in southwastern Tarim Basin, Xinjiang[J]. Sedimentary Geology and Tethyan Geology, 2009, 29(4): 1-4.
[38] 江新胜,潘忠习. 中国白垩纪沙漠及气候[M]. 北京:地质出版社,2005:1-117.

Jiang Xinsheng, Pan Zhongxi. Cretaceous deserts and climate in China[M]. Beijing: Geological Publishing House, 2005: 1-117.
[39] Jiang X S, Pan Z X, Fu Q P. Primary study on pattern of general circulation of atmosphere before uplift of the Tibetan Plateau in eastern Asia[J]. Science China (Seri. D): Earth Sciences, 2001, 44(8): 680-688.
[40] Jiang X S, Pan Z X, Xu J S, et al. Late Cretaceous aeolian dunes and reconstruction of palaeo-wind belts of the Xinjiang Basin, Jiangxi province, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 257(1/2): 58-66.
[41] 许欢,柳永清,旷红伟,等. 华北晚侏罗世—早白垩世风成砂沉积及其古地理和古生态学意义[J]. 古地理学报,2013,15(1):11-30.

Xu Huan, Liu Yongqing, Kuang Hongwei, et al. Sedimentology, palaeogeography and palaeoecology of the Late Jurassic-Early Cretaceous eolian sands in North China[J]. Journal of Palaeogeography, 2013, 15(1): 11-30.
[42] 黄乐清,黄建中,罗来,等. 湖南衡阳盆地东缘白垩系风成沉积的发现及其古环境意义[J]. 沉积学报,2019,37(4):735-748.

Huang Leqing, Huang Jianzhong, Luo Lai, et al. The discovery of Cretaceous eolian deposits at the eastern margin of the Hengyang Basin, Hunan, and its paleoenvironmental significance[J]. Acta Sedimentologica Sinica, 2019, 37(4): 735-748.
[43] Wu C H, Liu C L, Yi H S, et al. Mid-Cretaceous desert system in the Simao Basin, southwestern China, and its implications for sea-level change during a greenhouse climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 529-544.
[44] Wu C H, Rodríguez-López J P, Liu C L, et al. Late Cretaceous climbing erg systems in the western Xinjiang Basin: Palaeoatmosphere dynamics and East Asia margin tectonic forcing on desert expansion and preservation[J]. Marine and Petroleum Geology, 2018, 93: 539-552.
[45] Wu C H, Rodríguez-López J P, Santosh M. Plateau archives of lithosphere dynamics, cryosphere and paleoclimate: The formation of Cretaceous desert basins in East Asia[J]. Geoscience Frontiers, 2022, 13(6): 101454.
[46] Li G J, Wu C H, Rodríguez-López J P, et al. Mid-Cretaceous aeolian desert systems in the Yunlong area of the Lanping Basin, China: Implications for palaeoatmosphere dynamics and paleoclimatic change in East Asia[J]. Sedimentary Geology, 2018, 364: 121-140.
[47] Xu H, Liu Y Q, Kuang H W, et al. Late Jurassic fluvial-eolian deposits from the Tianchihe Formation, Ningwu-Jingle Basin, Shanxi province, China[J]. Journal of Asian Earth Sciences, 2019, 174: 245-262.
[48] Xu H, Liu Y Q, Kuang H W, et al. Late Jurassic-Early Cretaceous erg deposits in the Mengyin Basin, western Shandong province, China: Inferences about the wind regime and paleogeography[J]. Open Journal of Geology, 2019, 9(10): 700-703.
[49] Xu H, Liu Y Q, Kuang H W, et al. Diverse preserved dinosaur footprint assemblage from Jurassic-Cretaceous transition eolian dune deposits of western Shandong province, China[J]. Cretaceous Research, 2021, 121: 104733.
[50] 陈政宇,柳永清,江小均,等. 柴达木旺尕秀煤矿东南晚侏罗世—早白垩世风成砂古风向及古地理意义[J]. 地学前缘,2020,27(4):82-97.

Chen Zhengyu, Liu Yongqing, Jiang Xiaojun, et al. Paleo-wind direction and paleogeographic significance of Late Jurassic to Early Cretaceous anemoarenyte in the southeastern Wanggaxiu coal mine, Qaidam Basin[J]. Earth Science Frontiers, 2020, 27(4): 82-97.
[51] Cao S, Zhang L M, Wang C S, et al. Sedimentological characteristics and aeolian architecture of a plausible intermountain erg system in southeast China during the Late Cretaceous[J]. GSA Bulletin, 2020, 132(11/12): 2475-2488.
[52] Jiao H J, Wu C H, Rodríguez-López J P, et al. Late Cretaceous plateau deserts in the South China Block, and Quaternary analogues; sedimentology, dune reconstruction and wind-water interactions[J]. Marine and Petroleum Geology, 2020, 120: 104504.
[53] Yu X C, Liu C L, Wang C L, et al. Eolian deposits of the northern margin of the South China (Jianghan Basin): Reconstruction of the Late Cretaceous East Asian landscape in central China[J]. Marine and Petroleum Geology, 2020, 117: 104390.
[54] Yu X C, Liu C L, Wang C L, et al. Late Cretaceous aeolian desert system within the Mesozoic fold belt of South China: Palaeoclimatic changes and tectonic forcing of East Asian erg development and preservation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567: 110299.
[55] Yu X C, Wang C L, Bertolini G, et al. Damp-to dry aeolian systems: Sedimentology, climate forcing, and aeolian accumulation in the Late Cretaceous Liyou Basin, South China[J]. Sedimentary Geology, 2021, 426: 106030.
[56] Wu C H, Rodríguez-López J P. Cryospheric processes in Quaternary and Cretaceous hyper‐arid plateau desert oases[J]. Sedimentology, 2021, 68(2): 755-770.
[57] Qiao D W, Peng N, Kuang H W, et al. Changes in prevailing surface-paleowinds reveal the atmospheric circulation transition during Early Cretaceous in North China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 586: 110784.
[58] Lorenz R D, Zimbelman J R. Dune worlds: How windblown sand shapes planetary landscapes[M]. Heidelberg: Springer, 2014: 1-308.
[59] Stull R B. An introduction to boundary layer meteorology[M]. Dordrecht: Kluwer Academic Publishers, 1988: 1-666.
[60] Pye K, Tsoar H. Aeolian sand and sand dunes[M]. Berlin: Springer, 2009: 1-458.
[61] Greeley R, Iversen J D. Wind as a geological process on Earth, Mars, Venus and Titan[M]. New York: Cambridge University Press, 1985: 1-333.
[62] Sweet M L, Kocurek G. An empirical model of aeolian dune lee‐face airflow[J]. Sedimentology, 1990, 37(6): 1023-1038.
[63] Burkinshaw J R, Illenberger W K, Rust I C. Wind-speed profiles over a reversing transverse dune[J]. Geological Society, London, Special Publications, 1993, 72(1): 25-36.
[64] Frank A J, Kocurek G. Airflow up the stoss slope of sand dunes: Limitations of current understanding[J]. Geomorphology, 1996, 17(1/2/3): 47-54.
[65] Kocurek G. Desert aeolian systems[M]//Reading H G. Sedimentary environments; processes, facies and stratigraphy. 3rd ed. Oxford: Blackwell, 1996: 125-153.
[66] Tsoar H. Dynamic processes acting on a longitudinal (seif) sand dune[J]. Sedimentology, 1983, 30(4): 567-578.
[67] Lancaster N. Geomorphology of desert dunes[M]. New York: Routledge, 1995: 1-290.
[68] Folk R L. Longitudinal dunes of the northwestern edge of the Simpson Desert, northern Territory, Australia, 1. Geomorphology and grain size relationships[J]. Sedimentology, 1971, 16(1/2): 5-54.
[69] Pye K. Aeolian dust and dust deposits[M]. London: Academic Press, 1987: 1-334.
[70] Nickling W G. Aeolian sediment transport and deposition[M]//Pye K. Sediment transport and depositional processes. Oxford: Blackwell, 1994: 293-350.
[71] Nichols G. Sedimentology and stratigraphy[M]. 2nd ed. Chichester: Wiley-Blackwell, 2009: 1-419.
[72] Anderson R S. A theoretical model for aeolian impact ripples[J]. Sedimentology, 1987, 34(5): 943-956.
[73] De Ploey J. Some field measurements and experimental data on wind-blown sands[M]//De Boodt M D, Gabriels D. Assessment of erosion. Chichester: John Wiley and Sons Ltd, 1980: 541-552.
[74] Draga M. Eolian activity as a consequence of beach nourishment-observations at Westerland (Sylt), German North Sea coast[J]. Zeitschift für Geomorphologie Supplementband, 1983, 45: 303-319.
[75] Anderson R S, Hallet B. Sediment transport by wind: Toward a general model[J]. GSA Bulletin, 1986, 97(5): 523-535.
[76] Willetts B B, Rice M A. Practical representation of characteristic grain shape of sands: A comparison of methods[J]. Sedimentology, 1983, 30(4): 557-565.
[77] Hunt J C R, Nalpanis P. Saltating and suspended particles over flat and sloping surfaces. I. Modelling concepts[M]//Barndorff-Nielsen O E, Møller J T, Rasmussen K R, et al. Proceedings of international workshop on the physics of blown sand. Aarhus: University of Aarhus, 1985: 9-36.
[78] Abegg F E R, Loope D B, Harris P M M. Carbonate eolianites:Depositional models and diagenesis[M]. Tulsa: Society for Sedimentary Geology, 2001: 17-30.
[79] Besler H. The north-eastern Rub'al Khālī within the borders of the United Arab Emirates[J]. Zeitschrift für Geomorphologie, 1982, 26(4): 495-504.
[80] Caputo M V. Eolian structures and textures in oolitic-skeletal calcarenites from the Quaternary of San Salvador Island, Bahamas: A new perspective on eolian limestones[C]//Keith B D, Zuppann C W. Mississippian oolites and modern analogs. Tulsa: American Association of Petroleum Geologists, 1993: 243-259.
[81] Mountney N P, Russell A J. Sedimentology of cold-climate aeolian sandsheet deposits in the Askja region of northeast Iceland[J]. Sedimentary Geology, 2004, 166(3/4): 223-244.
[82] Kocurek G, Ewing R C. Source-to-sink: An Earth/Mars comparison of boundary conditions for eolian dune systems[C]// Grotzinger John P, Milliken Ralph E. Sedimentary Geology of Mars. Tulsa: SEPM Special Publication, 2012, 102: 151-168.
[83] Ahlbrandt T S. Textural parameters of eolian deposits[M]//McKee E D. A study of global sand seas. Washington: Government Printing Office, 1979: 21-52.
[84] Brookfield M E, Silvestro S. Eolian systems[M]//James N P, Darlymple R W. Facies models 4. Ottawa: Geological Association of Canada, 2010: 139-166.
[85] Whalley W B, Smith B J, McAlister J J, et al. Aeolian abrasion of quartz particles and the production of silt-size fragments: Preliminary results[J]. Geological Society, London, Special Publications, 1987, 35(1): 129-138.
[86] Vos K, Vandenberghe N, Elsen J. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation[J]. Earth-Science Reviews, 2014, 128: 93-104.
[87] Wilson I G. Aeolian bedforms-their development and origins[J]. Sedimentology, 1972, 19(3/4): 173-210.
[88] Seppälä M, Lindé K. Wind tunnel studies of ripple formation[J]. Geografiska Annaler: Series A, Physical Geography, 1978, 60(1/2): 29-42.
[89] Milana J P. Largest wind ripples on Earth?[J]. Geology, 2009, 37(4): 343-346.
[90] Sharp R P. Wind ripples[J]. The Journal of Geology, 1963, 71(5): 617-636.
[91] Cooke R, Warren A, Goudie A. Desert geomorphology[M]. London: UCL Press, 1993: 256.
[92] Wasson R J, Hyde R. Factors determining desert dune type[J]. Nature, 1983, 304(5924): 337-339.
[93] Fryberger S G, Schenk C. Wind sedimentation tunnel experiments on the origins of aeolian strata[J]. Sedimentology, 1981, 28(6): 805-821.
[94] Livingstone I, Bristow C, Bryant R G, et al. The Namib Sand Sea digital database of aeolian dunes and key forcing variables[J]. Aeolian Research, 2010, 2(2/3): 93-104.
[95] Havholm K G, Kocurek G. A preliminary study of the dynamics of a modern draa, Algodones, southeastern California, USA[J]. Sedimentology, 1988, 35(4): 649-669.
[96] Clemmensen L B. Preservation of interdraa and plinth deposits by the lateral migration of large linear draas (Lower Permian Yellow Sands, northeast England)[J]. Sedimentary Geology, 1989, 65(1/2): 139-151.
[97] Chrintz T, Clemmensen L B. Draa reconstruction, the Permian Yellow Sands, northeast England[M]//Pye K, Lancaster N. Aeolian sediments: Ancient and modern. Alger: International Association of Sedimentologists, 1993: 151-161.
[98] Hunter R E. Stratification styles in eolian sandstones: Some Pennsylvanian to Jurassic examples from the western interior U.S.A.[M]//Ethridge F G, Flores R M. Recent and ancient nonmarine depositional environments: Models for exploration. Tulsa: SEPM, 1981: 315-329.
[99] Kocurek G, Dott R H. Distinctions and uses of stratification types in the interpretation of eolian sand[J]. Journal of Sedimentary Research, 1981, 51(2): 579-595.
[100] Bristow C S, Mountney N P. Aeolian stratigraphy[M]//Shroder J F. Treatise on geomorphology. London: Academic Press, 2013: 246-268.
[101] Fryberger S G, Schenk C J, Krystinik L F. Stokes surfaces and the effects of near‐surface groundwater‐table on aeolian deposition[J]. Sedimentology, 1988, 35(1): 21-41.
[102] Mountney N, Howell J. Aeolian architecture, bedform climbing and preservation space in the Cretaceous Etjo Formation, NW Namibia[J]. Sedimentology, 2000, 47(4): 825-849.
[103] Allen J R L. Intensity of deposition from avalanches and the loose packing of avalanche deposits[J]. Sedimentology, 1972, 18(1/2): 105-111.
[104] Nickling W G, Neuman C M, Lancaster N. Grainfall processes in the lee of transverse dunes, Silver Peak, Nevada[J]. Sedimentology, 2002, 49(1): 191-209.
[105] Anderson R S. The pattern of grainfall deposition in the lee of aeolian dunes[J]. Sedimentology, 1988, 35(2): 175-188.
[106] Reineck H E. Haftrippeln und haftwarzen, Ablagerungsformen von Flugsand[J]. Senckenbergiana Lethaea, 1955, 36(5/6): 347-352.
[107] Kocurek G, Fielder G. Adhesion structures[J]. Journal of Sedimentary Research, 1982, 52(4): 1229-1241.
[108] Olsen H, Due P H, Clemmensen L B. Morphology and genesis of asymmetric adhesion warts: A new adhesion surface structure[J]. Sedimentary Geology, 1989, 61(3/4): 277-285.
[109] Hummel G, Kocurek G. Interdune areas of the back-island dune field, North Padre Island, Texas[J]. Sedimentary Geology, 1984, 39(1/2): 1-26.
[110] Brookfield M E. The origin of bounding surfaces in ancient aeolian sandstones[J]. Sedimentology, 1977, 24(3): 303-332.
[111] Fryberger S G. A review of aeolian bounding surfaces, with examples from the Permian Minnelusa Formation, USA[M]//North C P, Prosser D J. Characterization of fluvial and aeolian reservoirs. London: Geological Society Special Publications, 1993: 167-197.
[112] Rodríguez-López J P, Meléndez N, De Boer P L, et al. Aeolian sand sea development along the mid-Cretaceous western Tethyan margin (Spain): Erg sedimentology and palaeoclimate implications[J]. Sedimentology, 2008, 55(5): 1253-1292.
[113] Rubin D M. Cross-bedding, bedforms, and paleocurrents[M]. Tulsa: Society of Economic Paleontologists and Mineralogists, 1987: 1-187.
[114] Mountney N, Howell J, Flint S, et al. Relating eolian bounding-surface geometries to the bed forms that generated them: Etjo Formation, Cretaceous, Namibia[J]. Geology, 1999, 27(2): 159-162.
[115] Benan C A A, Kocurek G. Catastrophic flooding of an aeolian dune field: Jurassic Entrada and Todilto Formations, Ghost Ranch, New Mexico, USA[J]. Sedimentology, 2000, 47(6): 1069-1080.
[116] Kocurek G, Havholm K G. Eolian sequence stratigraphy: A conceptual framework[M]. Tulsa: American Association of Petroleum Geologists, 1993: 393-409.
[117] Edwin D M. Primary structures in some recent sediments[J]. AAPG Bulletin, 1957, 41(8): 1704-1747.
[118] McKee E D. Structures of dunes at White Sands National Monument, New Mexico (and a comparison with structures of dunes from other selected areas)[J]. Sedimentology, 1966, 7(1): 3-69.
[119] Rubin D M, Hunter R E. Why deposits of longitudinal dunes are rarely recognized in the geologic record[J]. Sedimentology, 1985, 32(1): 147-157.
[120] Scotti A A, Veiga G D. Sedimentary architecture of an ancient linear megadune (Barremian, Neuquén Basin): Insights into the long‐term development and evolution of aeolian linear bedforms[J]. Sedimentology, 2019, 66(6): 2191-2213.
[121] Nielson J, Kocurek G. Surface processes, deposits, and development of star dunes: Dumont dune field, California[J]. GSA Bulletin, 1987, 99(2): 177-186.
[122] Wang T, Zhang W M, Dong Z B, et al. The dynamic characteristics and migration of a pyramid dune[J]. Sedimentology, 2005, 52(3): 429-440.
[123] Hunter R E, Rubin D M. Interpreting cyclic crossbedding, with an example from the Navajo sandstone[J]. Developments in Sedimentology, 1983, 38: 429-454.
[124] Parrish J T, Peterson F. Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the western United States-A comparison[J]. Sedimentary Geology, 1988, 56(1/2/3/4): 261-282.
[125] Loope D B, Rowe C M, Joeckel R M. Annual monsoon rains recorded by Jurassic dunes[J]. Nature, 2001, 412(6842): 64-66.
[126] Ahlbrandt T S, Fryberger S G. Sedimentary features and significance of interdune deposits[M]//Ethridge F G, Flores R M. Recent and ancient nonmarine depositional environments: Models for exploration. Tulsa: SEPM, 1981: 293-314.
[127] Jones F H, dos Santos Scherer C M, Kuchle J. Facies architecture and stratigraphic evolution of aeolian dune and interdune deposits, Permian Caldeirão member (Santa Brígida Formation), Brazil[J]. Sedimentary Geology, 2016, 337: 133-150.
[128] Langford R, Chan M A. Flood surfaces and deflation surfaces within the Cutler Formation and Cedar Mesa sandstone (Permian), southeastern Utah[J]. GSA Bulletin, 1988, 100(10): 1541-1549.
[129] Kocurek G, Nielson J. Conditions favourable for the formation of warm‐climate aeolian sand sheets[J]. Sedimentology, 1986, 33(6): 795-816.
[130] Simplicio F, Basilici G. Unusual thick eolian sand sheet sedimentary succession: Paleoproterozoic Bandeirinha Formation, Minas Gerais[J]. Brazilian Journal of Geology, 2015, 45(Suppl.1): 3-11.
[131] Warren A. Dunes in the tenere desert[J]. The Geographical Journal, 1971, 137(4): 458-461.
[132] Fryberger S G, Al-Sari A M, Clisham T J, et al. Wind sedimentation in the Jafurah sand sea, Saudi Arabia[J]. Sedimentology, 1984, 31(3): 413-431.
[133] Lancaster N. Winds and sand movements in the Namib Sand Sea[J]. Earth Surface Processes and Landforms, 1985, 10(6): 607-619.
[134] Khalaf F. Textural characteristics and genesis of the aeolian sediments in the Kuwaiti Desert[J]. Sedimentology, 1989, 36(2): 253-271.
[135] Kocurek G, Lancaster N. Aeolian system sediment state: Theory and Mojave Desert Kelso dune field example[J]. Sedimentology, 1999, 46(3): 505-515.
[136] El-Baz F, Maingue M, Robinson C. Fluvio-aeolian dynamics in the north-eastern Sahara: The relationship between fluvial/aeolian systems and ground-water concentration[J]. Journal of Arid Environments, 2000, 44(2): 173-183.
[137] Nielson J, Kocurek G. Climbing zibars of the Algodones[J]. Sedimentary Geology, 1986, 48(1/2): 1-15.
[138] Mountney N P, Jagger A. Stratigraphic evolution of an aeolian erg margin system: The Permian Cedar Mesa sandstone, SE Utah, USA[J]. Sedimentology, 2004, 51(4): 713-743.
[139] Langford R P, Chan M A. Fluvial-aeolian interactions: Part II, ancient systems[J]. Sedimentology, 1989, 36(6): 1037-1051.
[140] Trewin N H. Mixed Aeolian sandsheet and fluvial deposits in the Tumblagooda sandstone, western Australia[M]//North C P, Prosser D J. Characterisation of fluvial and Aeolian reservoirs. London: Geological Society, Special Publications, 1993, 73(1): 219-230.
[141] Chakraborty T, Chakraborty C. Eolian-aqueous interactions in the development of a Proterozoic sand sheet: Shikaoda Formation, Hosangabad, India[J]. Journal of Sedimentary Research, 2001, 71(1): 107-117.
[142] Biswas A. Coarse aeolianites: Sand sheets and zibar-interzibar facies from the Mesoproterozoic Cuddapah Basin, India[J]. Sedimentary Geology, 2005, 174(1/2): 149-160.
[143] Scherer C M S, Lavina E L C. Sedimentary cycles and facies architecture of aeolian-fluvial strata of the Upper Jurassic Guará Formation, southern Brazil[J]. Sedimentology, 2005, 52(6): 1323-1341.
[144] Basilici G, Bó P F F D, Ladeira F S B. Climate‐induced sediment‐palaeosol cycles in a Late Cretaceous dry aeolian sand sheet: Marília Formation (North‐West Bauru Basin, Brazil)[J]. Sedimentology, 2009, 56(6): 1876-1904.
[145] Kocurek G. The Aeolian rock record (Yes, Virginia, it exists, but it really is rather special to create one)[M]//Goudie A S, Livingstone I, Stokes S. Aeolian environments, sediments and landforms. Chichester: John Wiley, 1999: 239-259.
[146] Williams G. Some aspects of the eolian saltation load[J]. Sedimentology, 1964, 3(4): 257-287.
[147] Willetts B B, Rice M A, Swaine S E. Shape effects in aeolian grain transport[J]. Sedimentology, 1982, 29(3): 409-417.
[148] Hotta S, Kubota S, Katori S, et al. Sand transport by wind on a wet sand surface[J]. Coastal Engineering, 1984, 1984: 1265-1281.
[149] Nickling W G. The stabilizing role of bonding agents on the entrainment of sediment by wind[J]. Sedimentology, 1984, 31(1): 111-117.
[150] Wasson R J, Nanninga P M. Estimating wind transport of sand on vegetated surfaces[J]. Earth Surface Processes and Landforms, 1986, 11(5): 505-514.
[151] Stockton P H, Gillette D A. Field measurement of the sheltering effect of vegetation on erodible land surfaces[J]. Land Degradation & Development, 1990, 2(2): 77-85.
[152] Mainguet M, Chemin M C. Sand seas of the Sahara and Sahel: An explanation of their thickness and sand dune type by the sand budget principle[J]. Developments in Sedimentology, 1983, 38: 353-363.
[153] Pulvertaft T C R. Aeolian dune and wet interdune sedimentation in the Middle Proterozoic Dala sandstone, Sweden[J]. Sedimentary Geology, 1985, 44(1/2): 93-111.
[154] Kocurek G, Lancaster N, Carr M, et al. Tertiary Tsondab sandstone formation: Preliminary bedform reconstruction and comparison to modern Namib Sand Sea dunes[J]. Journal of African Earth Sciences, 1999, 29(4): 629-642.
[155] Glennie K W, Buller A T. The Permian Weissliegend of NW Europe: The partial deformation of aeolian dune sands caused by the Zechstein transgression[J]. Sedimentary Geology, 1983, 35(1): 43-81.
[156] Scherer C M S. Preservation of aeolian genetic units by lava flows in the Lower Cretaceous of the Paraná Basin, southern Brazil[J]. Sedimentology, 2002, 49(1): 97-116.