[1] |
Burdige D J. Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets?[J]. Chemical Reviews, 2007, 107(2): 467-485. |
[2] |
Hedges J I, Keil R G. Sedimentary organic matter preservation: An assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2/3): 137-139. |
[3] |
Bianchi T S, Allison M A. Large-river delta-front estuaries as natural “recorders” of global environmental change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20): 8085-8092. |
[4] |
Jiao N Z, Liang Y T, Zhang Y Y, et al. Carbon pools and fluxes in the China seas and adjacent oceans[J]. Science China Earth Sciences, 2018, 61(11): 1535-1563. |
[5] |
Milliman J D, Farnsworth K L. River discharge to the coastal ocean: A global synthesis[M]. Cambridge: Cambridge University Press, 2011. |
[6] |
Allen P A. From landscapes into geological history[J]. Nature, 2008, 451(7176): 274-276. |
[7] |
Burdige D J. Burial of terrestrial organic matter in marine sediments: A re-assessment[J]. Global Biogeochemical Cycles, 2005, 19(4): GB4011. |
[8] |
Gao S, Collins M B. Holocene sedimentary systems on continental shelves[J]. Marine Geology, 2014, 352: 268-294. |
[9] |
Lee H J, Chough S K. Sediment distribution, dispersal and budget in the Yellow Sea[J]. Marine Geology, 1989, 87(2/3/4): 195-205. |
[10] |
Uehara K, Saito Y. Late Quaternary evolution of the Yellow/East China Sea tidal regime and its impacts on sediments dispersal and seafloor morphology[J]. Sedimentary Geology, 2003, 162(1/2): 25-38. |
[11] |
Alexander C R, DeMaster D J, Nittrouer C A. Sediment accumulation in a modern epicontinental-shelf setting: The Yellow Sea[J]. Marine Geology, 1991, 98(1): 51-72. |
[12] |
Badejo A O, Choi B H, Cho H G, et al. Environmental change in Yellow Sea during the last deglaciation to the Early Holocene (15, 000–8, 000 BP)[J]. Quaternary International, 2016, 392: 112-124. |
[13] |
Hu B Q, Yang Z S, Zhao M X, et al. Grain size records reveal variability of the East Asian winter monsoon since the Middle Holocene in the central Yellow Sea mud area, China[J]. Science China Earth Sciences, 2012, 55(10): 1656-1668. |
[14] |
Jia Y H, Li D W, Yu M, et al. High- and low-latitude forcing on the south Yellow Sea surface water temperature variations during the Holocene[J]. Global and Planetary Change, 2019, 182: 103025. |
[15] |
蓝先洪,张志珣,李日辉,等. 南黄海NT2孔沉积物物源研究[J]. 沉积学报,2010,28(6):1182-1189.
Lan Xianhong, Zhang Zhixun, Li Rihui, et al. Provenance study of sediments in core NT2 of the south Yellow Sea[J]. Acta Sedimentologica Sinica, 2010, 28(6): 1182-1189. |
[16] |
Hu B Q, Li J, Zhao J T, et al. Sr–Nd isotopic geochemistry of Holocene sediments from the south Yellow Sea: Implications for provenance and monsoon variability[J]. Chemical Geology, 2018, 479: 102-112. |
[17] |
Wu X N, Xing L, Jiang Y Q, et al. High-resolution reconstruction of sedimentary organic matter variability during the Holocene in the mud area of the Yellow Sea using multiple organic geochemical proxies[J]. Quaternary International, 2019, 503: 178-188. |
[18] |
Hao T, Liu X J, Ogg J, et al. Intensified episodes of East Asian winter monsoon during the Middle through Late Holocene driven by North Atlantic cooling events: High-resolution lignin records from the south Yellow Sea, China[J]. Earth and Planetary Science Letters, 2017, 479: 144-155. |
[19] |
Wu P, Xiao X T, Tao S Q, et al. Biomarker evidence for changes in terrestrial organic matter input into the Yellow Sea mud area during the Holocene[J]. Science China Earth Sciences, 2016, 59(6): 1216-1224. |
[20] |
Yang S Y, Jung H S, Lim D I, et al. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth-Science Reviews, 2003, 63(1/2): 93-120. |
[21] |
Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea[J]. Marine Geology, 2007, 240(1/2/3/4): 169-176. |
[22] |
Chang F M, Li T G, Zhuang L H, et al. Environmental anomalies in the northeastern East China Sea during the last 3 000 years: Implications for El Niño activity in the Holocene[J]. Chinese Journal of Oceanology and Limnology, 2010, 28(1): 190-200. |
[23] |
Wang Z C, Xiao X T, Yuan Z N, et al. Air-sea interactive forcing on phytoplankton productivity and community structure changes in the East China Sea during the Holocene[J]. Global and Planetary Change, 2019, 179: 80-91. |
[24] |
Zhao X C, Tao S Q, Zhang R P, et al. Biomarker records of phytoplankton productivity and community structure changes in the central Yellow Sea mud area during the Mid-Late Holocene[J]. Journal of Ocean University of China, 2013, 12(4): 639-646. |
[25] |
Zou L, Hu B Q, Li J, et al. Middle Holocene organic carbon and biomarker records from the south Yellow Sea: Relationship to the East Asian monsoon[J]. Journal of Ocean University of China, 2018, 17(4): 823-834. |
[26] |
Zhang H L, Li D W, Sachs J P, et al. Hydrodynamic processes and source changes caused elevated 14C ages of organic carbon in the East China Sea over the last 14.3 kyr[J]. Geochimica et Cosmochimica Acta, 2021, 304: 347-363. |
[27] |
苏纪兰. 中国近海水文[M]. 北京:海洋出版社,2005.
Su Jilan. Hydrology in China coastal sea[M]. Beijing: Ocean Press, 2005. |
[28] |
Southon J, Kashgarian M, Fontugne M, et al. Marine reservoir corrections for the Indian Ocean and Southeast Asia[J]. Radiocarbon, 2002, 44(1): 167-180. |
[29] |
Kong G S, Lee C W. Marine reservoir corrections (ΔR) for southern coastal waters of Korea[J]. Journal of the Korean Society of Oceanography, 2005, 10(2): 124-128. |
[30] |
Fry B, Sherr E B. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems[M]//Rundel P W, Ehleringer J R, Nagy K A. Stable isotopes in ecological research. New York: Springer, 1989: 196-229. |
[31] |
Cai D L.Geochemical studies on organic carbon isotope of the Huanghe River (Yellow River) estuary[J].Science in China(Series B), 1994, 37(8): 1001-1015. |
[32] |
Hu L M, Guo Z G, Feng J L, et al. Distributions and sources of bulk organic matter and aliphatic hydrocarbons in surface sediments of the Bohai Sea, China[J]. Marine Chemistry, 2009, 113(3/4): 197-211. |
[33] |
Koo H J, Cho H G. Changes in detrital sediment supply to the central Yellow Sea since the last deglaciation[J]. Ocean Science, 2020, 16(5): 1247-1259. |
[34] |
Guo Z G, Li J Y, Feng J L, et al. Compound-specific carbon isotope compositions of individual long-chain n-alkanes in severe Asian dust episodes in the North China coast in 2002[J]. Chinese Science Bulletin, 2006, 51(17): 2133-2140. |
[35] |
Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27(5/6): 213-250. |
[36] |
Tao S Q, Eglinton T I, Montluçon D B, et al. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance[J]. Earth and Planetary Science Letters, 2015, 414: 77-86. |
[37] |
Yu M, Eglinton T I, Haghipour N, et al. Impacts of natural and human-induced hydrological variability on particulate organic carbon dynamics in the Yellow River[J]. Environmental Science & Technology, 2019, 53(3): 1119-1129. |
[38] |
Wu Y, Eglinton T I, Zhang J, et al. Spatiotemporal variation of the quality, origin, and age of particulate organic matter transported by the Yangtze River (Changjiang)[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(9): 2908-2921. |
[39] |
Avelar S, van der Voort T S, Eglinton T I. Relevance of carbon stocks of marine sediments for national greenhouse gas inventories of maritime nations[J]. Carbon Balance and Management, 2017, 12(1): 10. |
[40] |
Lambeck K, Rouby H, Purcell A, et al. Sea level and global ice volumes from the last glacial maximum to the Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(43): 15296-15303. |
[41] |
Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, north Yellow Sea[J]. Marine Geology, 2004, 209(1/2/3/4): 45-67. |
[42] |
Hay W W. Detrital sediment fluxes from continents to oceans[J]. Chemical Geology, 1998, 145(3/4): 287-323. |
[43] |
Lim D, Jung H, Xu Z K, et al. Elemental and Sr–Nd isotopic compositional disparity of riverine sediments around the Yellow Sea: Constraints from grain-size and chemical partitioning[J]. Applied Geochemistry, 2015, 63: 272-281. |
[44] |
王利波,杨作升,赵晓辉,等. 南黄海中部泥质区YE-2孔8.4 ka BP来的沉积特征[J]. 海洋地质与第四纪地质,2009,29(5):1-11.
Wang Libo, Yang Zuosheng, Zhao Xiaohui, et al. Sedimentary characteristics of core YE-2 from the central mud area in the south Yellow Sea during last 8400 years and its interspace coarse layers[J]. Marine Geology & Quaternary Geology, 2009, 29(5): 1-11. |
[45] |
Schlünz B, Schneider R R, Müller P J, et al. Terrestrial organic carbon accumulation on the Amazon deep sea fan during the last glacial sea level low stand[J]. Chemical Geology, 1999, 159(1/2/3/4): 263-281. |
[46] |
Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3/4): 289-302. |
[47] |
Redfield A C. The influence of organisms on the composition of seawater[M]//Hill M N. The sea. New York: John Wiley, 1963: 26-77. |
[48] |
Lamb A L, Wilson G P, Leng M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth-Science Reviews, 2006, 75(1/2/3/4): 29-57. |
[49] |
Pancost R D, Boot C S. The palaeoclimatic utility of terrestrial biomarkers in marine sediments[J]. Marine Chemistry, 2004, 92(1/2/3/4): 239-261. |
[50] |
Xing L, Zhao M X, Zhang H L, et al. Biomarker evidence for paleoenvironmental changes in the southern Yellow Sea over the last 8200 years[J]. Chinese Journal of Oceanology and Limnology, 2012, 30(1): 1-11. |
[51] |
覃军干,吴国瑄,郑洪波,等. 从孢粉、藻类化石组合看长江三角洲第一硬质黏土层的成因及其古环境意义[J]. 第四纪研究,2004,24(5):546-554.
Qin Jungan, Wu Guoxuan, Zheng Hongbo, et al. Palynomorph assemblages, origin and palaeoenvironmental significance of the upper most hard clay in the deltaic area of the Changjiang River[J]. Quaternary Sciences, 2004, 24(5): 546-554. |
[52] |
Chen Q Q, Li C X, Li P, et al. Late Quaternary palaeosols in the Yangtze delta, China, and their palaeoenvironmental implications[J]. Geomorphology, 2008, 100(3/4): 465-483. |
[53] |
陈报章,李从先,业治铮. 冰后期长江三角洲北翼沉积及其环境演变[J]. 海洋学报,1995,17(1):64-75.
Chen Baozhang, Li Congxian, Ye Zhizheng. Sedimentation and environmental evolution of the northern flank of the Yangtze River delta in the late glacial period[J]. Acta Oceanologica Sinica, 1995, 17(1): 64-75. |
[54] |
邓兵,吴国瑄,李从先. 长江三角洲地区第一古土壤层及其古气候记录[J]. 海洋地质与第四纪地质,1999,19(3):29-37.
Deng Bing, Wu Guoxuan, Li Congxian. Paleoclimate recorded in the first layer of paleosol in Yangtze delta area[J]. Marine Geology & Quaternary Geology, 1999, 19(3): 29-37. |
[55] |
吴超,郑祥民,王辉,等. 长江三角洲第一硬质黏土层粒度多元统计分析及沉积环境判别[J]. 沉积学报,2019,37(1):115-123.
Wu Chao, Zheng Xiangmin, Wang Hui, et al. Multivariate statistical analysis of grain size of the first hard clay layer in the Yangtze River delta and sedimentary environment discrimination[J]. Acta Sedimentologica Sinica, 2019, 37(1): 115-123. |
[56] |
陈晓辉,李日辉,蓝先洪,等. 晚更新世末北黄海中部硬质粘土层的形成及其古环境意义[J]. 第四纪研究,2014,34(3):570-578.
Chen Xiaohui, Li Rihui, Lan Xianhong, et al. Formation and paleo-environmental implications of hard clay in the central north Yellow Sea during the late period of Pleistocene[J]. Quaternary Sciences, 2014, 34(3): 570-578. |
[57] |
许东禹,刘锡清,张训华,等. 中国近海地质[M]. 北京:地质出版社,1997.
Xu Dongyu, Liu Xiqing, Zhang Xunhua, et al. China offshore geology[M]. Beijing: Geological Publishing House, 1997. |
[58] |
Yoo D G, Koo N H, Lee H Y, et al. Acquisition, processing and interpretation of high-resolution seismic data using a small-scale multi-channel system: An example from the Korea Strait inner shelf, south-east Korea[J]. Exploration Geophysics, 2016, 47(4): 341-351. |
[59] |
Yoo D G, Lee G S, Kim G Y, et al. Seismic stratigraphy and depositional history of Late Quaternary deposits in a tide-dominated setting: An example from the eastern Yellow Sea[J]. Marine and Petroleum Geology, 2016, 73: 212-227. |
[60] |
Kong G S, Park S C, Han H C, et al. Late Quaternary paleoenvironmental changes in the southeastern Yellow Sea, Korea[J]. Quaternary International, 2006, 144(1): 38-52. |
[61] |
Saito Y. Sedimentary environment and budget in the East China Sea[J]. Bulletin on Coastal Oceanography, 1998, 36(1): 43-58. |
[62] |
Park S C, Lee H H, Han H S, et al. Evolution of Late Quaternary mud deposits and recent sediment budget in the southeastern Yellow Sea[J]. Marine Geology, 2000, 170(3/4): 271-288. |
[63] |
Sun Y B, Clemens S C, Morrill C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2012, 5(1): 46-49. |
[64] |
Yancheva G, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445(7123): 74-77. |
[65] |
Wen X Y, Liu Z Y, Wang S W, et al. Correlation and anti-correlation of the East Asian summer and winter monsoons during the last 21, 000 years[J]. Nature Communications, 2016, 7(1): 11999. |
[66] |
Koo H, Lee Y, Kim S, et al. Clay mineral distribution and provenance in surface sediments of central Yellow Sea mud[J]. Geosciences Journal, 2018, 22(6): 989-1000. |
[67] |
Xing L, Tao S Q, Zhang H L, et al. Distributions and origins of lipid biomarkers in surface sediments from the southern Yellow Sea[J]. Applied Geochemistry, 2011, 26(8): 1584-1593. |
[68] |
Zhang F, Li C L, Sun S, et al. Distribution patterns of chlorophyll a in spring and autumn in association with hydrological features in the southern Yellow Sea and northern East China Sea[J]. Chinese Journal of Oceanology and Limnology, 2009, 27(4): 784-792. |
[69] |
申顺喜,李安春,袁巍. 南黄海中部的低能沉积环境[J]. 海洋与湖沼,1996,27(5):518-523.
Shen Shunxi, Li Anchan, Yuan Wei. Low energy environment of the central south Yellow Sea[J]. Oceanologia et Limnologia Sinica, 1996, 27(5): 518-523. |
[70] |
Shi X F, Shen S X, Yi H I, et al. Modern sedimentary environments and dynamic depositional systems in the southern Yellow Sea[J]. Chinese Science Bulletin, 2003, 48(1): 1-7. |
[71] |
Kaboth-Bahr S, Bahr A, Yamoah K A, et al. Rapid humidity changes across the northern South China Sea during the last ~40 kyrs[J]. Marine Geology, 2021, 440: 106579. |
[72] |
Xie S C, Evershed R P, Huang X Y, et al. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China[J]. Geology, 2013, 41(8): 827-830. |
[73] |
Jian Z M, Wang P X, Saito Y, et al. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean[J]. Earth and Planetary Science Letters, 2000, 184(1): 305-319. |
[74] |
Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/southern Oscillation activity at millennial timescales during the Holocene epoch[J]. Nature, 2002, 420(6912): 162-165. |
[75] |
陈永利,王凡,白学志,等. 东海带鱼(Trichiurus haumela)渔获量与邻近海域水文环境变化的关系[J]. 海洋与湖沼,2004,35(5):404-412.
Chen Yongli, Wang Fan, Bai Xuezhi, et al. Relationship between hairtail (Trichiurus haumela) catches and marine hydrologic environment in East China Sea[J]. Oceanologia et Limnologia Sinica, 2004, 35(5): 404-412. |