[1] Raup D M. Size of the Permo-Triassic bottleneck and its evolutionary implications[J]. Science, 1979, 206(4415):217-218. doi:  10.1126/science.206.4415.217
[2] Jin Y G, Shen S Z, Henderson C M, et al. The Global Stratotype Section and Point(GSSP)for the boundary between the Capitanian and Wuchiapingian Stage (Permian)[J]. Episodes, 2006, 29(4):253-262. doi:  10.18814/epiiugs/2006/v29i4/003
[3] Clapham M E, Shen S Z, Bottjer D J. The double mass extinction revisited:Reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis(Late Permian)[J]. Paleobiology, 2009, 35(1):32-50. doi:  10.1666/08033.1
[4] Shen S Z, Shi G R. Latest Guadalupian brachiopods from the Guadalupian/Lopingian boundary GSSP section at Penglaitan in Laibin, Guangxi, South China and implications for the timing of the pre-Lopingian crisis[J]. Palaeoworld, 2009, 18(2/3):152-161. http://cn.bing.com/academic/profile?id=946dbd18ad0ff9d356f67609988cfaeb&encoded=0&v=paper_preview&mkt=zh-cn
[5] Jin Y G, Wang Y, Wang W, et al. Pattern of marine mass extinction near the Permian-Triassic boundary in South China[J]. Science, 2000, 289(5478):432-436. doi:  10.1126/science.289.5478.432
[6] Yin H F, Zhang K X, Tong J N, et al. The Global Stratotype Section and Point(GSSP)of the Permian-Triassic boundary[J]. Episodes, 2001, 24(2):102-114. doi:  10.18814/epiiugs/2001/v24i2/004
[7] Shen S Z, Crowley J L, Wan Y, et al. Calibrating the end-Permian mass extinction[J]. Science, 2011, 334(6061):1367-1372. doi:  10.1126/science.1213454
[8] Stebbins A, Williams J, Brookfield M, et al. Frequent euxinia in southern Neo-Tethys Ocean prior to the end-Permian biocrisis:Evidence from the Spiti region, India[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516:1-10. http://cn.bing.com/academic/profile?id=e5205341697b753155aab9a35aaad0c9&encoded=0&v=paper_preview&mkt=zh-cn
[9] Korte C, Kozur H W. Carbon-isotope stratigraphy across the Permian-Triassic boundary:A review[J]. Journal of Asian Earth Sciences, 2010, 39(4):215-235.
[10] Yin H F, Xie S C, Luo G M, et al. Two episodes of environmental change at the Permian-Triassic boundary of the GSSP section Meishan[J]. Earth-Science Reviews, 2012, 115(3):163-172. doi:  10.1016/j.earscirev.2012.08.006
[11] Shen S Z, Bowring S A. The end-Permian mass extinction:A still unexplained catastrophe[J]. National Science Review, 2014, 1(4):492-495. doi:  10.1093/nsr/nwu047
[12] Wignall P B, Sun Y D, Bond D P G, et al. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China[J]. Science, 2009, 324(5931):1179-1182. doi:  10.1126/science.1171956
[13] Bond D P G, Hilton J, Wignall P B, et al. The Middle Permian (Capitanian) mass extinction on land and in the oceans[J]. Earth-Science Reviews, 2010, 102(1/2):100-116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e61c047b7088a3a71eecb30607a4dadb
[14] Wei H Y, Wei X M, Qiu Z, et al. Redox conditions across the G-L boundary in South China:Evidence from pyrite morphology and sulfur isotopic compositions[J]. Chemical Geology, 2016, 440:1-14.
[15] Brennecka G A, Herrmann A D, Algeo T J, et al. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(43):17631-17634. doi:  10.1073/pnas.1106039108
[16] Cao C Q, Love G D, Hays L E, et al. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian Mass Extinction Event[J]. Earth and Planetary Science Letters, 2009, 281(3/4):188-201. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cf9ceff696558aeb95460f0d0d4d847a
[17] Wei H Y, Algeo T J, Yu H, et al. Episodic euxinia in the Changhsingian(Late Permian)of South China:Evidence from framboidal pyrite and geochemical data[J]. Sedimentary Geology, 2015, 319:78-97.
[18] Isozaki Y. Permo-Triassic boundary superanoxia and stratified superocean:Records from lost deep sea[J]. Science, 1997, 276(5310):235-238. doi:  10.1126/science.276.5310.235
[19] Ding Y, Cao C Q, Zheng Q F. Lopingian(Upper Permian) trace fossils from the northern Penglaitan Section, Laibin, Guangxi, South China and their environmental implications[J]. Palaeoworld, 2016, 25(3):377-387. doi:  10.1016/j.palwor.2015.11.012
[20] 万秋, 李双应, 丁宁, 等.湖北秭归兴滩二叠系沉积及演化特征[J].安徽地质, 2011, 21(1):14-18. doi:  10.3969/j.issn.1005-6157.2011.01.003

Wan Qiu, Li Shuang-ying, Ding Ning, et al. Permian deposits and their evolutional features in Xingtan, Zigui, Hubei[J]. Geology of Anhui, 2011, 21(1):14-18. doi:  10.3969/j.issn.1005-6157.2011.01.003
[21] Yin H F, Jiang H S, Xia W C, et al. The end-Permian regression in South China and its implication on mass extinction[J]. Earth-Science Reviews, 2014, 137:19-33.
[22] Nafi M, Xia W C, Zhang N. Late Permian(Changhsingian) conodont biozonation and the basal boundary, Ganxi section, western Hubei province, South China[J]. Canadian Journal of Earth Sciences, 2006, 43(2):121-133. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c69ce6ace37f2a3ef45eed9bfea79b22
[23] Wang L, Shi X Y, Jiang G Q. Pyrite morphology and redox fluctuations recorded in the Ediacaran Doushantuo Formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 333-334:218-227. doi:  10.1016/j.palaeo.2012.03.033
[24] Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments:An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20):3897-3912. doi:  10.1016/0016-7037(96)00209-8
[25] Wilkin R T, Barnes H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61(2):323-339. doi:  10.1016/S0016-7037(96)00320-1
[26] Wilkin R T, Arthur M A. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea:Evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition[J]. Geochimica et Cosmochimica Acta, 2001, 65(9):1399-1416. doi:  10.1016/S0016-7037(01)00552-X
[27] Bond D, Wignall P B, Racki G. Extent and duration of marine anoxia during the Frasnian-Famennian(Late Devonian) mass extinction in Poland, Germany, Austria and France[J]. Geological Magazine, 2004, 141(2):173-193. doi:  10.1017/S0016756804008866
[28] Wei H Y, Chen D Z, Wang J G, et al. Organic accumulation in the Lower Chihsia Formation(Middle Permian)of South China:Constraints from pyrite morphology and multiple geochemical proxies[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 353-355:73-86. doi:  10.1016/j.palaeo.2012.07.005
[29] Wei H Y, Tang Z W, Yan D T, et al. Guadalupian(Middle Permian)ocean redox evolution in South China and its implications for mass extinction[J]. Chemical Geology, 2019, 530:119318, doi: 10.1016/j.chemgeo.2019.119318.
[30] Wignall P B, Bond D P G, Sun Y D, et al. Ultra-shallow-marine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen)and the suppression of benthic radiation[J]. Geological Magazine, 2016, 153(2):316-331. doi:  10.1017/S0016756815000588
[31] Huang Y G, Chen Z Q, Wignall P B, et al. Latest Permian to Middle Triassic redox condition variations in ramp settings, South China:Pyrite framboid evidence[J]. Geological Society of America Bulletin, 2017, 129(1/2):229-243.
[32] Wignall P B, Newton R. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks[J]. American Journal of Science, 1998, 298(7):537-552. doi:  10.2475/ajs.298.7.537
[33] Lash G G, Blood D R. Organic matter accumulation, redox, and diagenetic history of the Marcellus Formation, southwestern Pennsylvania, Appalachian basin[J]. Marine and Petroleum Geology, 2014, 57:244-263. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b3b31bada4fb2d8a8b41d96dfd756b9a
[34] Lei L D, Shen J, Li C, et al. Controls on regional marine redox evolution during Permian-Triassic transition in South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 486:17-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d2e59d848636a4dcc907fb71b9c49e5c
[35] Wei H Y, Yu H, Wang J G, et al. Carbon isotopic shift and its cause at the Wuchiapingian-Changhsingian boundary in the Upper Permian at the Zhaojiaba section, South China:Evidences from multiple geochemical proxies[J]. Journal of Asian Earth Sciences, 2015, 105:270-285.
[36] Clarkson M O, Wood R A, Poulton S W, et al. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery[J]. Nature Communications, 2016, 7:12236.
[37] Nielsen J K, Shen Y N. Evidence for sulfidic deep water during the Late Permian in the East Greenland Basin[J]. Geology, 2004, 32(12):1037-1040. doi:  10.1130/G20987.1
[38] Burgess S D, Muirhead J D, Bowring S A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction[J]. Nature Communications, 2017, 8:164.