[1] 吴胜和,冯文杰,印森林,等. 冲积扇沉积构型研究进展[J]. 古地理学报,2016,18(4):497-512.

Wu Shenghe, Feng Wenjie, Yin Senlin, et al. Research advances in alluvial fan depositional architecture[J]. Journal of Palaeogeography, 2016, 18(4): 497-512.
[2] 刘大卫,纪友亮,高崇龙,等. 辫状河型冲积扇片流带特征与支撑砾岩成因研究:以准噶尔盆地西北缘现代白杨河冲积扇为例[J]. 沉积学报,2020,38(5):1026-1036.

Liu Dawei, Ji Youliang, Gao Chonglong, et al. Research on the sheetflow zone and frame-support conglomerate in a braided-river alluvial fan: Case study of the modern poplar river alluvial fan, northwestern Junggar Basin[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1026-1036.
[3] 高崇龙,王剑,靳军,等. 冲积扇沉积机制研究进展及其成因分类方案探讨[J]. 地质论评,2020,66(6):1650-1675.

Gao Chonglong, Wang Jian, Jin Jun, et al. Research progress on sedimentary mechanism of alluvial fan and discussion on the genetic classification scheme[J]. Geological Review, 2020, 66(6): 1650-1675.
[4] 高志勇,冯佳睿,周川闽,等. 干旱气候环境下季节性河流沉积特征:以库车河剖面下白垩统为例[J]. 沉积学报,2014,32(6):1060-1071.

Gao Zhiyong, Feng Jiarui, Zhou Chuanmin, et al. Arid climate seasonal rivers deposition: A case of Lower Cretaceous in Kuche River outcrop[J]. Acta Sedimentologica Sinica, 2014, 32(6): 1060-1071.
[5] 高志勇,周川闽,冯佳睿,等. 盆地内大面积砂体分布的一种成因机理:干旱气候下季节性河流沉积[J]. 沉积学报,2015,33(3):427-438.

Gao Zhiyong, Zhou Chuanmin, Feng Jiarui, et al. Distribution of a large area of sand body formation mechanism: Ephemeral streams in arid climate[J]. Acta Sedimentologica Sinica, 2015, 33(3): 427-438.
[6] 张昌民,朱锐,赵康,等. 从端点走向连续:河流沉积模式研究进展述评[J]. 沉积学报,2017,35(5):926-944.

Zhang Changmin, Zhu Rui, Zhao Kang, et al. From end member to continuum: Review of fluvial facies model research[J]. Acta Sedimentologica Sinica, 2017, 35(5): 926-944.
[7] 石雨昕,高志勇,周川闽,等. 新疆博斯腾湖北缘现代冲积扇与扇三角洲平原分支河流体系的沉积特征与意义[J]. 石油学报,2019,40(5):542-556.

Shi Yuxin, Gao Zhiyong, Zhou Chuanmin, et al. Sedimentary characteristics and significance of distributive fluvial system of modern alluvial fan and fan delta plain in the northern margin of Bosten Lake, Xinjiang[J]. Acta Petrolei Sinica, 2019, 40(5): 542-556.
[8] Hartley A J, Weissmann G S, Nichols G J, et al. Large distributive fluvial systems: Characteristics, distribution, and controls on development[J]. Journal of Sedimentary Research, 2010, 80(2): 167-183.
[9] 张元福,戴鑫,王敏,等. 河流扇的概念、特征及意义[J]. 石油勘探与开发,2020,47(5):947-957.

Zhang Yuanfu, Dai Xin, Wang Min, et al. The concept, characteristics and significance of fluvial fans[J]. Petroleum Exploration and Development, 2020, 47(5): 947-957.
[10] 李相博,刘化清,邓秀芹,等. 干旱环境河流扇概念与鄂尔多斯盆地延长组“满盆砂”成因新解[J]. 沉积学报,2021,39(5):1208-1221.

Li Xiangbo, Liu Huaqing, Deng Xiuqin, et al. The concept of fluvial fans in an arid environment: A new explanation of the origin of “sand-filled basins” in the Yanchang Formation, Ordos Basin[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1208-1221.
[11] 张金亮. 曲流河扇相模式及应用[J]. 地质论评,2022,68(2):408-430.

Zhang Jinliang. The facies model of a meandering fluvial fan and its application[J]. Geological Review, 2022, 68(2): 408-430.
[12] Weissmann G S, Hartley A J, Nichols G J, et al. Fluvial form in modern continental sedimentary basins: Distributive fluvial systems[J]. Geology, 2010, 38(1): 39-42.
[13] Moscariello A. Alluvial fans and fluvial fans at the margins of continental sedimentary basins: Geomorphic and sedimentological distinction for geo-energy exploration and development[M]//Ventra D, Clarke L E. Geology and geomorphology of alluvial and fluvial fans: Terrestrial and planetary perspectives. Geological Society, London, Special Publications, 2017, 440(1): 215-243.
[14] 冉思红,王晓蕾,罗毅. 多模式预测气候变化及其对雪冰流域径流的影响[J]. 干旱区地理,2021,44(3):807-818.

Ran Sihong, Wang Xiaolei, Luo Yi. Predicting climate change and its impact on runoff in snow-ice basin with multi-climate models[J]. Arid Land Geography, 2021, 44(3): 807-818.
[15] 朱俊海. 不同水文学方法计算生态基流成果分析[J]. 四川水利,2021,42(1):104-106.

Zhu Junhai. Analysis on the results of calculating ecological base flow with different hydrological methods[J]. Sichuan Water Resources, 2021, 42(1): 104-106.
[16] 艾力帕尔·阿合买提. 库车河流域水资源开发利用现状及生态基流问题探析[J]. 地下水,2021,43(1):160-161.

Ahemaiti A. Analysis on the current situation of water resources development and utilization and ecological base flow in Kuqa River basin[J]. Ground Water, 2021, 43(1): 160-161.
[17] 李应运,方邺森. 南京雨花台砾石层的岩组—岩相分析[J]. 南京大学学报(地质学),1963,3(1):123-134.

Li Yingyun, Fang Yesen. Petrofabric lithofacies analysis of the Yuhuatai gravel layer in Nanjing[J]. Journal of Nanjing University (Geology), 1963, 3(1): 123-134.
[18] 朱大岗,赵希涛,孟宪刚,等. 念青唐古拉山主峰地区第四纪砾石层砾组分析[J]. 地质力学学报,2002,8(4):323-332.

Zhu Dagang, Zhao Xitao, Meng Xiangang, et al. Fabric analysis of gravel in Quaternary gravel beds on backbone area of Niqingtanggulashan mountains[J]. Journal of Geomechanics, 2002, 8(4): 323-332.
[19] 高志勇,石雨昕,冯佳睿,等. 砾石在分析盆地物源区迁移与湖岸线演化中的作用[J]. 古地理学报,2021,23(3):507-524.

Gao Zhiyong, Shi Yuxin, Feng Jiarui, et al. Role of gravel in analysis on migration of source area and lake shorelines in lacustrine basin[J]. Journal of Palaeogeography (Chinese Edition), 2021, 23(3): 507-524.
[20] 高志勇,石雨昕,冯佳睿,等. 准噶尔盆地南缘侏罗系:下白垩统岩相古地理恢复与意义[J]. 石油勘探与开发,2022,49(1):68-80.

Gao Zhiyong, Shi Yuxin, Feng Jiarui, et al. Lithofacies paleogeography restoration and its significance of Jurassic to Lower Cretaceous in southern margin of Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 68-80.
[21] 庄灵光,姚仕明,赵占超. 水流动力轴线摆幅与弯曲河道曲率关系研究[J]. 水利水电技术,2020,51(8):86-93.

Zhuang Lingguang, Yao Shiming, Zhao Zhanchao. Study on relationship between swing amplitude of flow dynamic axis and curvature of bending river channel[J]. Water Resources and Hydropower Engineering, 2020, 51(8): 86-93.
[22] 李志威,秦小华,方春明. 天然河湾几何形态统计分析[J]. 水科学进展,2011,22(5):638-644.

Li Zhiwei, Qin Xiaohua, Fang Chunming. Statistical analysis of the geometrical form of natural rivers meanders[J]. Advances in Water Science, 2011, 22(5): 638-644.
[23] 赵军,单福征,杨凯,等. 平原河网地区河流曲度及城市化响应[J]. 水科学进展,2011,22(5):631-637.

Zhao Jun, Shan Fuzheng, Yang Kai, et al. River sinuosity in tidal plain and its response to rapid urbanization[J]. Advances in Water Science, 2011, 22(5): 631-637.
[24] 石书缘,胡素云,冯文杰,等. 基于Google Earth软件建立曲流河地质知识库[J]. 沉积学报,2012,30(5):869-878.

Shi Shuyuan, Hu Suyun, Feng Wenjie, et al. Building geological knowledge database based on Google Earth software[J]. Acta Sedimentologica Sinica, 2012, 30(5): 869-878.
[25] Wang J Q, Bhattacharya J P. Plan-view paleochannel reconstruction of amalgamated meander belts, Cretaceous ferron sandstone, Notom delta, south-central Utah, U.S.A.[J]. Journal of Sedimentary Research, 2018, 88(1): 58-74.
[26] Durkin P R, Boyd R L, Hubbard S M, et al. Three-dimensional reconstruction of meander-belt evolution, Cretaceous Mcmurray Formation, Alberta Foreland Basin, Canada[J]. Journal of Sedimentary Research, 2017, 87(10): 1075-1099.
[27] Ghinassi M, Moody J. Reconstruction of an extreme flood hydrograph and morphodynamics of a meander bend in a high-peak discharge variability river (Powder River, USA)[J]. Sedimentology, 2021, 68(7): 3549-3576.
[28] 李胜利,于兴河,姜涛,等. 河流辫:曲转换特点与废弃河道模式[J]. 沉积学报,2017,35(1):1-9.

Li Shengli, Yu Xinghe, Jiang Tao, et al. Meander-braided transition features and abandoned channel patterns in fluvial environment[J]. Acta Sedimentologica Sinica, 2017, 35(1): 1-9.
[29] 王海峰,范廷恩,宋来明,等. 高弯度曲流河砂体规模定量表征研究[J]. 沉积学报,2017,35(2):279-289.

Wang Haifeng, Fan Ting'en, Song Laiming, et al. Quantitative characterization study on sand body scale in high sinuosity meandering river[J]. Acta Sedimentologica Sinica, 2017, 35(2): 279-289.
[30] Olariu C, Bhattacharya J P. Terminal distributary channels and delta front architecture of river-dominated delta systems[J]. Journal of Sedimentary Research, 2006, 76(2): 212-233.
[31] 石雨昕,高志勇,周川闽,等. 新疆焉耆盆地开都河不同河型段砂砾质沉积特征与差异分析[J]. 古地理学报,2017,19(6):1037-1048.

Shi Yuxin, Gao Zhiyong, Zhou Chuanmin, et al. Depositional characteristics and variations of different channel deposits in the Kaidu River of Yanqi Basin, Xinjiang[J]. Journal of Palaeogeography, 2017, 19(6): 1037-1048.
[32] 蒙莉娜,丁建丽,王敬哲,等. 基于环境变量的渭干河—库车河绿洲土壤盐分空间分布[J]. 农业工程学报,2020,36(1):175-181.

Meng Lina, Ding Jianli, Wang Jingzhe, et al. Spatial distribution of soil salinity in Ugan-Kuqa River delta oasis based on environmental variables[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(1): 175-181.
[33] 康璇,王雪梅. 基于景观格局的新疆渭干河—库车河三角洲绿洲的生态风险评价[J]. 西北农林科技大学学报(自然科学版),2017,45(8):139-146,156.

Kang Xuan, Wang Xuemei. Assessment of ecological risk of Weigan-Kuqa River delta oasis in Xinjiang based on landscape pattern[J]. Journal of Northwest A & F University (Natural Science Edition), 2017, 45(8): 139-146, 156.
[34] 满苏尔·沙比提,武胜利,陆吐布拉·依明. 渭干河—库车河三角洲绿洲近10年地下水位及水质时空变化特征[J]. 干旱地区农业研究,2010,28(1):212-217.

Mansur·Sabit, Wu Shengli, Lutpulla·Imin. Temporal and spatial variation features and genetic analysis of groundwater level and water quality in the delta oasis of the Weigan River and Kuqa River in the last decade[J]. Agricultural Research in the Arid Areas, 2010, 28(1): 212-217.
[35] 宋璠,杨少春,苏妮娜,等. 准噶尔盆地北缘山前带湿地扇沉积特征及控藏作用[J]. 中国石油大学学报(自然科学版),2016,40(3):25-35.

Song Fan, Yang Shaochun, Su Nina, et al. Sedimentary characteristics and accumulation effect of humid fan in northern margin piedmont belt of Junggar Basin[J]. Journal of China University of Petroleum, 2016, 40(3): 25-35.
[36] 王长金,胡鹏,李薇,等. 河流分汊成因与演变机制研究综述[J]. 水利水电科技进展,2022,42(3):112-120.

Wang Changjin, Hu Peng, Li Wei, et al. A review on formation and evolution mechanism of river bifurcation[J]. Advances in Science and Technology of Water Resources, 2022, 42(3): 112-120.