[1] Riechelmann S, Mavromatis V, Buhl D, et al. Controls on Formation and alteration of early diagenetic dolomite: A multi-proxy δ44/40Ca, δ26Mg, δ18O and δ13C approach[J]. Geochimica et Cosmochimica Acta, 2020, 283: 167-183.
[2] Warren J. Dolomite: occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1-3): 1-81.
[3] Land L S. Failure to precipitate dolomite at 25 °C from dilute solution despite 1000-fold oversaturation after 32 years[J]. Aquatic Geochemistry, 1998, 4(3/4): 361-368.
[4] Warren J K. Evaporites: Sediments, resources and hydrocarbons[M]. Berlin, Heidelberg: Springer, 2006.
[5] Warren J K. Evaporites: A geological compendium[M]. 2nd ed. Cham: Springer, 2016.
[6] Chen X, Wei M Y, Li X B, et al. The co-relationship of marine carbonates and evaporites: A study from the Tarim Basin, NW China[J]. Carbonates and Evaporites, 2020, 35(4): 122.
[7] 胡安平,沈安江,杨翰轩,等. 碳酸盐岩—膏盐岩共生体系白云岩成因及储盖组合[J]. 石油勘探与开发,2019,46(5):916-928.

Hu Anping, Shen Anjiang, Yang Hanxuan, et al. Dolomite genesis and reservoir-cap rock assemblage in carbonate-evaporite paragenesis system[J]. Petroleum Exploration and Development, 2019, 46(5): 916-928.
[8] Mazumdar A, Strauss H. Sulfur and strontium isotopic compositions of carbonate and evaporite rocks from the Late Neoproterozoic-Early Cambrian Bilara Group (Nagaur-Ganganagar Basin, India): Constraints on intrabasinal correlation and global sulfur cycle[J]. Precambrian Research, 2006, 149(3/4): 217-230.
[9] Allen P A. The Huqf Supergroup of Oman: Basin development and context for Neoproterozoic glaciation[J]. Earth-Science Reviews, 2007, 84(3/4): 139-185.
[10] Prince J K G, Rainbird R H, Wing B A. Evaporite deposition in the mid-Neoproterozoic as a driver for changes in seawater chemistry and the biogeochemical cycle of sulfur[J]. Geology, 2019, 47(4): 375-379.
[11] 史卜庆,王兆明,万仑坤,等. 2020年全球油气勘探形势及2021年展望[J]. 国际石油经济,2021,29(3):39-44.

Shi Buqing, Wang Zhaoming, Wan Lunkun, et al. The global oil and gas exploration situation in 2020 and the outlook for 2021[J]. International Petroleum Economics, 2021, 29(3): 39-44.
[12] 孙旭东,郑求根,郭兴伟,等. 巴西桑托斯盆地构造演化与油气勘探前景[J]. 海洋地质前沿,2021,37(2):37-45.

Sun Xudong, Zheng Qiugen, Guo Xingwei, et al. Tectonic evolution of Santos Basin, Brazil and its bearing on oil-gas exploration[J]. Marine Geology Frontiers, 2021, 37(2): 37-45.
[13] 任影,钟大康,高崇龙,等. 川东寒武系龙王庙组白云岩地球化学特征、成因及油气意义[J]. 石油学报,2016,37(9):1102-1115.

Ren Ying, Zhong Dakang, Gao Chonglong, et al. Geochemical characteristics, genesis and hydrocarbon significance of dolomite in the Cambrian Longwangmiao Formation, eastern Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(9): 1102-1115.
[14] 包洪平,杨帆,蔡郑红,等. 鄂尔多斯盆地奥陶系白云岩成因及白云岩储层发育特征[J]. 天然气工业,2017,37(1):32-45.

Bao Hongping, Yang Fan, Cai Zhenghong, et al. Origin and reservoir characteristics of Ordovician dolostones in the Ordos Basin[J]. Natural Gas Industry, 2017, 37(1): 32-45.
[15] 郑剑锋,沈安江,刘永福,等. 塔里木盆地寒武系与蒸发岩相关的白云岩储层特征及主控因素[J]. 沉积学报,2013,31(1):89-98.

Zheng Jianfeng, Shen Anjiang, Liu Yongfu, et al. Main controlling factors and characteristics of Cambrian dolomite reservoirs related to evaporite in Tarim Basin[J]. Acta Sedimentologica Sinica, 2013, 31(1): 89-98.
[16] 于洲,丁振纯,王利花,等. 鄂尔多斯盆地奥陶系马家沟组五段膏盐下白云岩储层形成的主控因素[J]. 石油与天然气地质,2018,39(6):1213-1224.

Yu Zhou, Ding Zhenchun, Wang Lihua, et al. Main factors controlling formation of dolomite reservoir underlying gypsum-salt layer in the 5th member of Ordovician Majiagou Formation, Ordos Basin[J]. Oil & Gas Geology, 2018, 39(6): 1213-1224.
[17] Warren J K. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits[J]. Earth-Science Reviews, 2010, 98(3/4): 217-268.
[18] 杜金虎,汪泽成,邹才能,等. 上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用[J]. 石油学报,2016,37(1):1-16.

Du Jinhu, Wang Zecheng, Zou Caineng, et al. Discovery of intra-cratonic rift in the Upper Yangtze and its coutrol effect on the formation of Anyue giant gas field[J]. Acta Petrolei Sinica, 2016, 37(1): 1-16.
[19] 付斯一,张成弓,陈洪德,等. 鄂尔多斯盆地中东部奥陶系马家沟组五段盐下白云岩储集层特征及其形成演化[J]. 石油勘探与开发,2019,46(6)1087-1098.

Fu Siyi, Zhang Chenggong, Chen Hongde, et al. Characteristics, formation and evolution of pre-salt dolomite reservoirs in the fifth member of the Ordovician Majiagou Formation, mid-east Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(6): 1087-1098.
[20] 王立成,刘成林,张华. 华南地块震旦纪晚期—早寒武世古大陆位置暨灯影组蒸发岩成钾条件分析[J]. 地球学报,2013,34(5):585-593.

Wang Licheng, Liu Chenglin, Zhang Hua. Tectonic and sedimentary settings of evaporites in the Dengying Formation, South China Block: Implications for the potential of potash formation[J]. Acta Geoscientica Sinica, 2013, 34(5): 585-593.
[21] Schröder S, Schreiber B C, Amthor J E, et al. A depositional model for the terminal Neoproterozoic-Early Cambrian Ara Group evaporites in south Oman[J]. Sedimentology, 2003, 50(5): 879-898.
[22] Prasad B, Asher R, Borgohai B. Late Neoproterozoic (Ediacaran)-Early Paleozoic (Cambrian) acritarchs from the marwar supergroup, Bikaner-Nagaur Basin, Rajasthan[J]. Journal of the Geological Society of India, 2010, 75(2): 415-431.
[23] Schmid S. Neoproterozoic evaporites and their role in carbon isotope chemostratigraphy (Amadeus Basin, Australia)[J]. Precambrian Research, 2017, 290: 16-31.
[24] Turner E C, Bekker A. Thick sulfate evaporite accumulations marking a Mid-Neoproterozoic oxygenation event (Ten Stone Formation, Northwest Territories, Canada)[J]. Geological Society of America Bulletin, 2016, 128(1/2): 203-222.
[25] 杜金虎,潘文庆. 塔里木盆地寒武系盐下白云岩油气成藏条件与勘探方向[J]. 石油勘探与开发,2016,43(3):327-339.

Du Jinhu, Pan Wenqing. Accumulation conditions and play targets of oil and gas in the Cambrian subsalt dolomite, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(3): 327-339.
[26] 顾志翔,何幼斌,彭勇民,等. 四川盆地下寒武统膏盐岩“多潟湖”沉积模式[J]. 沉积学报,2019,37(4):834-846.

Gu Zhixiang, He Youbin, Peng Yongmin, et al. “Multiple-lagoon” sedimentary model of the Lower Cambrian gypsum-salt rocks in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2019, 37(4): 834-846.
[27] 刘丽红,高永进,王丹丹,等. 塔里木盆地寒武系膏盐岩对盐下白云岩储层的影响[J]. 岩石矿物学杂志,2021,40(1):109-120.

Liu Lihong, Gao Yongjin, Wang Dandan, et al. The impact of gypsum salt rock on Cambrian subsalt dolomite reservoir in Tarim Basin[J]. Acta Petrologica et Mineralogica, 2021, 40(1): 109-120.
[28] 景帅. 塔里木盆地巴楚隆起带寒武系白云岩岩相与地球化学特征[D]. 西安:西安石油大学,2020.

Jing Shuai. Lithic facies and geochemical characteristics of Cambrian dolomite in the Bachu uplift belt, Tarim Basin[D]. Xi’an: Xi’an Shiyou University, 2020.
[29] 吴贇. 辽宁省石膏矿地质特征、成因及成矿预测[D]. 长春:吉林大学,2019.

Wu Yun. Geological characteristics, genesis and metallogenic prediction of the gypsum deposits in Liaoning province[D]. Changchun: Jilin University, 2019.
[30] 邹佐元,向芳,沈昕,等. 沉积相带控制下的白云岩成因模式及判别特征[J]. 科学技术与工程,2020,20(15):5887-5899.

Zou Zuoyuan, Xiang Fang, Shen Xin, et al. Genesis and identification of dolomite under the control of sedimentary facies zone[J]. Science Technology and Engineering, 2020, 20(15): 5887-5899.
[31] Grotzinger J, Al-Rawahi Z. Depositional facies and platform architecture of microbialite-dominated carbonate reservoirs, Ediacaran-Cambrian Ara Group, Sultanate of Om[J]. AAPG Bulletin, 2014, 98(8): 1453-1494.
[32] Husinec A. Sequence stratigraphy of the Red River Formation, Williston Basin, USA: Stratigraphic signature of the Ordovician Katian greenhouse to icehouse transition[J]. Marine and Petroleum Geology, 2016, 77: 487-506.
[33] Black T J. Evaporite karst of northern Lower Michigan[J]. Carbonates and Evaporites, 1997, 12(1): 81-83.
[34] Coniglio M, Frizzell R O B, Pratt B R. Reef-capping laminites in the Upper Silurian carbonate- to-evaporite transition, Michigan Basin, south-western Ontario[J]. Sedimentology, 2004, 51(3): 653-668.
[35] 苏中堂,陈洪德,徐粉燕,等. 鄂尔多斯盆地马家沟组白云岩地球化学特征及白云岩化机制分析[J]. 岩石学报,2011,27(8):2230-2238.

Su Zhongtang, Chen Hongde, Xu Fenyan, et al. Geochemistry and dolomitization mechanism of Majiagou dolomites in Ordovician, Ordos, China[J]. Acta Petrologica Sinica, 2011, 27(8): 2230-2238.
[36] El-Tabakh M, Mory A, Schreiber B C, et al. Anhydrite cements after dolomitization of shallow marine Silurian carbonates of the Gascoyne Platform, southern Carnarvon Basin, western Australia[J]. Sedimentary Geology, 2004, 164(1/2): 75-87.
[37] Machel H G, Buschkuehle B E. Diagenesis of the Devonian Southesk-cairn carbonate complex, Alberta, Canada: Marine cementation, burial dolomitization, thermochemical sulfate reduction, anhydritization, and squeegee fluid flow[J]. Journal of Sedimentary Research, 2008, 78(5): 366-389.
[38] Nagy Z R, Somerville I D, Gregg J M, et al. Lower Carboniferous peritidal carbonates and associated evaporites adjacent to the Leinster Massif, southeast Irish Midlands[J]. Geological Journal, 2005, 40(2): 173-192.
[39] 郭凯,程晓东,范乐元,等. 滨里海盆地东缘北特鲁瓦地区白云岩特征及其储层发育机制[J]. 沉积学报,2016,34(4):747-757.

Guo Kai, Cheng Xiaodong, Fan Leyuan, et al. Characteristics and development mechanism of dolomite reservoirs in North Truva of eastern Pre-Caspian Basin[J]. Acta Sedimentologica Sinica, 2016, 34(4): 747-757.
[40] 郑荣才,党录瑞,郑超,等. 川东—渝北黄龙组碳酸盐岩储层的成岩系统[J]. 石油学报,2010,31(2):237-245.

Zheng Rongcai, Dang Lurui, Zheng Chao, et al. Diagenetic system of carbonate reservoir in Huanglong Formation from East Sichuan to North Chongqing area[J]. Acta Petrolei Sinica, 2010, 31(2): 237-245.
[41] Becker F, Bechstädt T. Sequence stratigraphy of a carbonate-evaporite succession (Zechstein 1, Hessian Basin, Germany)[J]. Sedimentology, 2006, 53(5): 1083-1120.
[42] Amel H, Jafarian A, Husinec A, et al. Microfacies, depositional environment and diagenetic evolution controls on the reservoir quality of the Permian Upper Dalan Formation, Kish gas field, Zagros Basin[J]. Marine and Petroleum Geology, 2015, 67: 57-71.
[43] 张杰,何周,徐怀宝,等. 乌尔禾—风城地区二叠系白云质岩类岩石学特征及成因分析[J]. 沉积学报,2012,30(5):859-867.

Zhang Jie, He Zhou, Xu Huaibao, et al. Petrological characteristics and origin of Permian Fengcheng Formation dolomitic rocks in Wuerhe-Fengcheng area, Junggar Basin[J]. Acta Sedimentologica Sinica, 2012, 30(5): 859-867.
[44] Raines M A, Dewers T A. Dedolomitization as a driving mechanism for karst generation in Permian Blaine Formation, southwestern Oklahoma, USA[J]. Carbonates and Evaporites, 1997, 12(1): 24-31.
[45] Calça C P, Fairchild T R, Cavalazzi B, et al. Dolomitized cells within chert of the Permian Assistência Formation, Paraná Basin, Brazil[J]. Sedimentary Geology, 2016, 335: 120-135.
[46] Li P P, Zou H Y, Yu X Y, et al. Source of dolomitizing fluids and dolomitization model of the Upper Permian Changxing and Lower Triassic Feixianguan formations, NE Sichuan Basin, China[J]. Marine and Petroleum Geology, 2021, 125: 104834.
[47] Sun C Y, Hu M Y, Hu Z G, et al. Sedimentary facies and sequence stratigraphy in the Lower Triassic Jialingjiang Formation, Sichuan Basin, China[J]. Journal of Petroleum Exploration and Production Technology, 2019, 9(2): 837-847.
[48] 金之钧,龙胜祥,周雁,等. 中国南方膏盐岩分布特征[J]. 石油与天然气地质,2006,27(5):571-583,593.

Jin Zhijun, Long Shengxiang, Zhou Yan, et al. A study on the distribution of saline-deposit in southern China[J]. Oil & Gas Geology, 2006, 27(5): 571-583, 593.
[49] Beigi M, Jafarian A, Javanbakht M, et al. Facies analysis, diagenesis and sequence stratigraphy of the carbonate-evaporite succession of the Upper Jurassic Surmeh Formation: Impacts on reservoir quality (Salman oil field, Persian Gulf, Iran)[J]. Journal of African Earth Sciences, 2017, 129: 179-194.
[50] Konari M B, Rastad E. Nature and origin of dolomitization associated with sulphide mineralization: New insights from the Tappehsorkh Zn-Pb (-Ag-Ba) deposit, Irankuh mining district, Iran[J]. Geological Journal, 2018, 53(1): 1-21.
[51] Wanas H A. Petrography, geochemistry and primary origin of spheroidal dolomite from the Upper Cretaceous/Lower Tertiary Maghra El-Bahari Formation at Gabal Ataqa, Northwest Gulf of Suez, Egypt[J]. Sedimentary Geology, 2002, 151(3/4): 211-224.
[52] Lüning S, Gräfe K U, Bosence D, et al. Discovery of marine Late Cretaceous carbonates and evaporites in the Kufra Basin (Libya) redefines the southern limit of the Late Cretaceous transgression[J]. Cretaceous Research, 2000, 21(6): 721-731.
[53] Quijada I E, Benito M I, Suarez-Gonzalez P, et al. Challenges to carbonate-evaporite peritidal facies models and cycles: Insights from Lower Cretaceous stromatolite-bearing deposits (Oncala Group, N Spain)[J]. Sedimentary Geology, 2020, 408: 105752.
[54] Gündogan I, Önal M, Depçi T. Sedimentology, petrography and diagenesis of Eocene-Oligocene evaporites: The Tuzhisar Formation, SW Sivas Basin, Turkey[J]. Journal of Asian Earth Sciences, 2005, 25(5): 791-803.
[55] Gibert L, Ortí F, Rosell L. Plio-Pleistocene lacustrine evaporites of the Baza Basin (Betic Chain, SE Spain)[J]. Sedimentary Geology, 2007, 200(1/2): 89-116.
[56] 王晓晓,韩作振,李明慧,等. 柴达木盆地西部SG-1钻孔中白云石成因探讨[J]. 高校地质学报,2020,26(5):520-529.

Wang Xiaoxiao, Han Zuozhen, Li Minghui, et al. On the origin of dolomite in laustrine sediments of the borehole SG-1 in western Qaidam Basin[J]. Geological Journal of China Universities, 2020, 26(5): 520-529.
[57] Strohmenger C J, Al-Mansoori A, Al-Jeelani O, et al. The sabkha sequence at Mussafah Channel (Abu Dhabi, United Arab Emirates): Facies stacking patterns, microbial-mediated dolomite and evaporite overprint[J]. GeoArabia, 2010, 15(1): 49-90.
[58] Liu M J, Xiong Y, Xiong C, et al. Evolution of diagenetic system and its controls on the reservoir quality of pre-salt dolostone: The case of the Lower Ordovician Majiagou Formation in the central Ordos Basin, China[J]. Marine and Petroleum Geology, 2020, 122: 104674.
[59] Jiang L, Hu S Y, Zhao W Z, et al. Diagenesis and its impact on a microbially derived carbonate reservoir from the Middle Triassic Leikoupo Formation, Sichuan Basin, China[J]. AAPG Bulletin, 2018, 102(12): 2599-2628.
[60] de Lange G J, Krijgsman W. Messinian salinity crisis: A novel unifying shallow gypsum/deep dolomite Formation mechanism[J]. Marine Geology, 2010, 275(1/2/3/4): 273-277.
[61] Sorento T, Olaussen S, Stemmerik L. Controls on deposition of shallow marine carbonates and evaporites-Lower Permian Gipshuken Formation, central Spitsbergen, Arctic Norway[J]. Sedimentology, 2020, 67(1): 207-238.
[62] 张静,张宝民,单秀琴. 中国中西部盆地海相白云岩主要形成机制与模式[J]. 地质通报,2017,36(4):664-675.

Zhang Jing, Zhang Baomin, Shan Xiuqin. Major formation mechanisms and models of marine dolomite in middle and western basins of China[J]. Geological Bulletin of China, 2017, 36(4): 664-675.
[63] Sánchez-Román M, McKenzie J A, de Luca Rebello Wagener A, et al. Presence of sulfate does not inhibit low-temperature dolomite precipitation[J]. Earth and Planetary Science Letters, 2009, 285(1/2): 131-139.
[64] 王小林,胡文瑄,张军涛,等. 塔里木盆地和田1井中寒武统膏岩层段发现原生白云石[J]. 地质论评,2016,62(2):419-433.

Wang Xiaolin, Hu Wenxuan, Zhang Juntao, et al. Discovery of primary dolomite in evaporite sequences of Hetian-1 well, Middle Cambrian, Tarim Basin[J]. Geological Review, 2016, 62(2): 419-433.
[65] Borrelli M, Perri E, Critelli S, et al. The onset of the Messinian Salinity Crisis in the central Mediterranean recorded by pre-salt carbonate/evaporite deposition[J]. Sedimentology, 2021, 68(3): 1159-1197.
[66] Schinteie R, Brocks J J. Paleoecology of Neoproterozoic hypersaline environments: Biomarker evidence for haloarchaea, methanogens, and cyanobacteria[J]. Geobiology. 2017, 15(5): 641-663.
[67] Barbieri R, Stivaletta N, Marinangeli L, et al. Microbial signatures in sabkha evaporite deposits of Chott el Gharsa (Tunisia) and their astrobiological implications[J]. Planetary and Space Science, 2006, 54(8): 726-736.
[68] 沈安江,周进高,辛勇光,等. 四川盆地雷口坡组白云岩储层类型及成因[J]. 海相油气地质,2008,13(4):19-28.

Shen Anjiang, Zhou Jingao, Xin Yongguang, et al. Origin of Triassic Leikoupo dolostone reservoirs in Sichuan Basin[J]. Marine Origin Petroleum Geology, 2008, 13(4): 19-28.
[69] 黄熙. 四川盆地三叠纪盐盆富钾卤水富集规律[D]. 北京:中国地质大学(北京),2013.

Huang Xi. The enrichment regularity of Triassic potassium-rich brines of the salt-bearing Sichuan Basin[D]. Beijing: China University of Geosciences (Beijing), 2013.
[70] 冯强汉,许淑梅,池鑫琪,等. 鄂尔多斯盆地西部下古生界风化壳优质储集层发育规律及成因机制:以桃2区块马家沟组马五1-4亚段为例[J]. 古地理学报,2021,23(4):837-854.

Feng Qianghan, Xu Shumei, Chi Xinqi, et al. Development regularity and genetic mechanism of weathering crust reservoirs in the western Ordos Basin: Take the sub-members 1-4 of member 5 of Majiagou Formation in Tao 2 block as an example[J]. Journal of Palaeogeography (Chinese Edition), 2021, 23(4): 837-854.
[71] Xiong Y, Tan X C, Dong G D, et al. Diagenetic differentiation in the Ordovician Majiagou Formation, Ordos Basin, China: Facies, geochemical and reservoir heterogeneity constraints[J]. Journal of Petroleum Science and Engineering, 2020, 191: 107179.
[72] Qiu X, Wang H M, Yao Y C, et al. High salinity facilitates dolomite precipitation mediated by Haloferax volcanii DS52[J]. Earth and Planetary Science Letters, 2017, 472: 197-205.
[73] 王金艺,金振奎. 微生物白云岩形成机理、识别标志及存在的问题[J/OL]. 沉积学报:1-15[2021-10-19]. https://doi.org/10.14027/j.issn.1000-0550.2020.135. doi:  10.14027/j.issn.1000-0550.2020.135

Wang Jinyi, Jin Zhenkui. Formation mechanism, identification markers, and questions regarding microbial dolomite[J]. Acta Sedimentologica Sinica:1-15[2021-10-19]. https://doi.org/10.14027/j.issn.1000-0550.2020.135. doi:  10.14027/j.issn.1000-0550.2020.135
[74] Meng F W, Zhang Z L, Schiffbauer J D, et al. The Yudomski event and subsequent decline: New evidence from δ34S data of Lower and Middle Cambrian evaporites in the Tarim Basin, western China[J]. Carbonates and Evaporites, 2019, 34(3): 1117-1129.
[75] 赵海彤,张永生,邢恩袁,等. 陕北盐盆中奥陶统马五段蒸发岩硫同位素特征及其古环境意义[J]. 地质学报,2018,92(8):1680-1692.

Zhao Haitong, Zhang Yongsheng, Xing Enyuan, et al. Sulfur isotopic characteristics of evaporite in the Middle Ordovician Mawu member in the salt basin of northern Shaanxi and its paleoenvironment significance[J]. Acta Geologica Sinica, 2018, 92(8): 1680-1692.
[76] Schoenherr J, Reuning L, Kukla P A, et al. Halite cementation and carbonate diagenesis of intra-salt reservoirs from the Late Neoproterozoic to Early Cambrian Ara Group (South Oman Salt Basin)[J]. Sedimentology, 2009, 56(2): 567-589.
[77] Hu A P, Shen A J, Yang H X, et al. Dolomite genesis and reservoir-cap rock assemblage in carbonate-evaporite paragenesis system[J]. Petroleum Exploration and Development, 2019, 46(5): 969-982.
[78] Vasconcelos C, McKenzie J A, Bernasconi S, et al. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 1995, 377(6546): 220-222.
[79] Warthmann R, Vasconcelos C, Sass H, et al. Desulfovibrio brasiliensis sp. nov., a moderate halophilic sulfate-reducing bacterium from Lagoa Vermelha (Brazil) mediating dolomite formation[J]. Extremophiles, 2005, 9(3): 255-261.
[80] Bontognali T R R, Mckenzie J A, Warthmann R J, et al. Microbially influenced Formation of Mg-calcite and Ca-dolomite in the presence of exopolymeric substances produced by sulphate-reducing bacteria[J]. Terra Nova, 2014, 26(1): 72-77.
[81] Vasconcelos P M, Renne P R, Becker T A, et al. Mechanisms and kinetics of atmospheric, radiogenic, and nucleogenic argon release from cryptomelane during 40Ar39Ar analysis[J]. Geochimica et Cosmochimica Acta, 1995, 59(10): 2057-2070.
[82] Caruso A, Pierre C, Blanc-Valleron M M, et al. Carbonate deposition and diagenesis in evaporitic environments: The evaporative and sulphur-bearing limestones during the settlement of the Messinian Salinity Crisis in Sicily and Calabria[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 429: 136-162.
[83] Ruggieri R, Forti P, Antoci M L, et al. Accidental contamination during hydrocarbon exploitation and the rapid transfer of heavy-mineral fines through an overlying highly karstified aquifer (Paradiso Spring, SE Sicily)[J]. Journal of Hydrology, 2017, 546: 123-132.
[84] Husinec A, Harvey L A. Late Ordovician climate and sea-level record in a mixed carbonate-siliciclastic-evaporite lithofacies, Williston Basin, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 561: 110054.
[85] Gutiérrez F, Mozafari M, Carbonel D, et al. Leakage problems in dams built on evaporites. The case of La Loteta Dam (NE Spain), a reservoir in a large karstic depression generated by interstratal salt dissolution[J]. Engineering Geology, 2015, 185: 139-154.
[86] 张水昌,朱光有,何坤. 硫酸盐热化学还原作用对原油裂解成气和碳酸盐岩储层改造的影响及作用机制[J]. 岩石学报,2011,27(3):809-826.

Zhang Shuichang, Zhu Guangyou, He Kun, et al. The effects of thermochemical sulfate reduction on occurrence of oil-cracking gas and reformation of deep carbonate reservoir and the interaction mechanisms[J]. Acta petrologica Sinica, 2011, 27(3): 809-826.
[87] 徐云强,易娟子,袁海锋,等. 川东龙门构造飞仙关组滩相储层成岩作用及孔隙演化[J]. 成都理工大学学报(自然科学版),2021,48(3):326-336,376.

Xu Yunqiang, Yi Juanzi, Yuan Haifeng, et al. Diagenesis and pore evolution of Feixianguan Formation beach facies reservoirs in Longmen structure, eastern Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2021, 48(3): 326-336, 376.
[88] 吴仕强,朱井泉,王国学,等. 塔里木盆地寒武—奥陶系白云岩结构构造类型及其形成机理[J]. 岩石学报,2008,24(6):1390-1400.

Wu ShiQiang, Zhu Jingquan, Wang Guoxue, et al. Types and origin of Cambrian-Ordovician dolomites in Tarim Basin[J]. Acta petrologica Sinica,2008,24(6): 1390-1400.
[89] Hallenberger M, Reuning L, Schoenherr J. Dedolomitization potential of fluids from gypsum-to-anhydrite conversion: Mass balance constraints from the Late Permian zechstein-2-carbonates in NW Germany[J]. Geofluids, 2018, 2018: 1784821.
[90] Budai J M, Lohmann K C, Owen R M. Burial dedolomite in the Mississippian Madison Limestone, Wyoming and Utah thrust belt[J]. Journal of Sedimentary Research, 1984, 54(1): 276-288.
[91] Arenas C, Zarza A M A, Pardo G. Dedolomitization and other early diagenetic processes in Miocene lacustrine deposits, Ebro Basin (Spain)[J]. Sedimentary Geology, 1999, 125(1/2): 23-45.
[92] Sanz-Rubio E, Sánchez-Moral S, Cañaveras J C, et al. Calcitization of Mg-Ca carbonate and Ca sulphate deposits in a continental Tertiary Basin (Calatayud Basin, NE Spain)[J]. Sedimentary Geology, 2001, 140(1/2): 123-142.
[93] Rameil N. Early diagenetic dolomitization and dedolomitization of Late Jurassic and earliest Cretaceous platform carbonates: A case study from the Jura Mountains (NW Switzerland, E France)[J]. Sedimentary Geology, 2008, 212(1/2/3/4): 70-85.
[94] Kenny R. Origin of disconformity dedolomite in the Martin Formation (Late Devonian, northern Arizona)[J]. Sedimentary Geology, 1992, 78(1/2): 137-146.
[95] Meng F W, Ni P, Schiffbauer J D, et al. Ediacaran seawater temperature: Evidence from inclusions of Sinian halite[J]. Precambrian Research, 2011, 184(1/2/3/4): 63-69.
[96] Horita J. Oxygen and carbon isotope fractionation in the system dolomite-water-CO2 to elevated temperatures[J]. Geochimica et Cosmochimica Acta, 2014, 129: 111-124.
[97] Timofeeff M N, Lowenstein T K, da Silva M A M, et al. Secular variation in the major-ion chemistry of seawater: Evidence from fluid inclusions in Cretaceous halites[J]. Geochimica et Cosmochimica Acta, 2006, 70(8): 1977-1994.
[98] McCaffrey M A, Lazar B, Holland H D. The evaporation path of seawater and the coprecipitation of Br- and K+ with halite[J]. Journal of Sedimentary Research, 1987, 57(5): 928-938.
[99] 刘嘉庆,李忠,颜梦珂,等. 塔里木盆地塔中地区下奥陶统白云岩的成岩流体演化:来自团簇同位素的证据[J]. 石油与天然气地质,2020,41(1):68-82.

Liu Jiaqing, Li Zhong, Yan Mengke, et al. Diagenetic fluid evolution of dolomite from the Lower Ordovician in Tazhong area, Tarim Basin: Clumped isotopic evidence[J]. Oil & Gas Geology, 2020, 41(1): 68-82.
[100] 郑浩夫,袁璐璐,刘波,等. 川西南中二叠统中粗晶白云石流体来源分析[J]. 沉积学报,2020,38(3):589-597.

Zheng Haofu, Yuan Lulu, Liu Bo, et al. Origins of dolomitization fluids within Middle Permian coarse dolomite, SW Sichuan Basin[J]. Acta Sedimentologica Sinica, 2020, 38(3): 589-597.
[101] 文华国,周刚,郑荣才,等. 四川盆地开江—梁平台棚东侧长兴组礁白云岩沉积—成岩—成藏系统[J]. 岩石学报,2017,33(4):1115-1134.

Wen Huaguo, Zhou Gang, Zheng Rongcai, et al. The sedimentation-diagenesis-reservoir Formation system of reef dolomites from Changxing Formation in the eastern of Kaijiang-Liangping platform-shelf, Sichuan Basin[J]. Acta Petrologica Sinica, 2017, 33(4): 1115-1134.
[102] Haeri-Ardakani O, Al-Aasm I, Coniglio M. Fracture mineralization and fluid flow evolution: An example from Ordovician-Devonian carbonates, southwestern Ontario, Canada[J]. Geofluids, 2013, 13(1): 1-20.
[103] 钱一雄,尤东华,陈代钊,等. 塔东北库鲁克塔格中上寒武统白云岩岩石学、地球化学特征与成因探讨:与加拿大西部盆地惠而浦(Whirlpool point)剖面对比[J]. 岩石学报,2012,28(8):2525-2541.

Qian Yixiong, You Donghua, Chen Daizhao, et al. The petrographic and geochemical signatures and implication of origin of the Middle and Upper Cambrian dolostone in eastern margin Tarim: Comparative studies with the Whirlpool point of the western Canada Sedimentary Basin[J]. Acta Petrologica Sinica, 2012, 28(8): 2525-2541.
[104] 郑荣才,刘萍,文华国. 川东北地区飞仙关组和长兴组白云岩成因与成岩—成藏系统[J]. 成都理工大学学报(自然科学版),2017,44(1):1-13.

Zheng Rongcai, Liu Ping, Wen Huaguo. Dolomite genesis and diagenetic-reservoir system of Feixianguan and Changxing Formation in northeast Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2017, 44(1): 1-13.
[105] Ning M, Lang X G, Huang K J, et al. Towards understanding the origin of massive dolostones[J]. Earth and Planetary Science Letters, 2020, 545: 116403.
[106] Hardie L A. Dolomitization: A critical view of some current views[J]. Journal of Sedimentary Research, 1987, 57(1): 166-183.
[107] 胡光明,纪友亮,张亚京. 陆相盐湖层序地层学研究简述[J]. 盐湖研究,2006,14(1):55-59.

Hu Guangming, Ji Youliang, Zhang Yajing. Summarization on continental salt Lake sequence stratigraphy[J]. Journal of Salt Lake Research, 2006, 14(1): 55-59.
[108] Hsü K J, Schneider J. Progress report on dolomitization—hydrology of Abu Dhabi sabkhas, Arabian Gulf[M]//Purser B H. The Persian gulf. Berlin, Heidelberg: Springer, 1973: 409-422.
[109] Adams J E, Rhodes M L. Dolomitization by seepage refluxion[J]. AAPG Bulletin, 1960, 44(12): 1912-1920.
[110] Badiozamani K. The dorag dolomitization model, application to the Middle Ordovician of Wisconsin[J]. Journal of Sedimentary Research, 1973, 43(4): 965-984.
[111] Amthor J E, Mountjoy E W, Machel H G. Subsurface dolomites in Upper Devonian Leduc Formation buildups, central part of Rimbey-Meadowbrook reef trend, Alberta, Canada[J]. Bulletin of Canadian Petroleum Geology, 1993, 41(2): 164-185.
[112] Evans D G, Nunn J A. Free thermohaline convection in sediments surrounding a salt column[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B9): 12413-12422.
[113] Vasconcelos C, McKenzie J A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil)[J]. Journal of Sedimentary Research, 1997, 67(3): 378-390.
[114] Allan J R, Wiggins W D. Dolomite reservoirs[J]. Geochemical techniques for evaluating origin and distribution: AAPG Continuing Education Course Notes Series, 1993, 36: 129.
[115] Tucker M E. Sequence stratigraphy of carbonate-evaporite basins: Models and application to the Upper Permian (Zechstein) of northeast England and adjoining North Sea[J]. Journal of the Geological Society, 1991, 148(6): 1019-1036.
[116] Morrow D W. Synsedimentary dolospar cementation: A possible Devonian example in the Camsell Formation, Northwest Territories, Canada[J]. Sedimentology, 1990, 37(4): 763-773.
[117] Morad D, Nader F H, Morad S, et al. Limited thermochemical sulfate reduction in hot, anhydritic, sour gas carbonate reservoirs: The Upper Jurassic Arab Formation, United Arab Emirates[J]. Marine and Petroleum Geology, 2019, 106: 30-41.
[118] Boschetti T, Awadh S M, Al-Mimar H S, et al. Chemical and isotope composition of the oilfield brines from Mishrif Formation (southern Iraq): Diagenesis and geothermometry[J]. Marine and Petroleum Geology, 2020, 122: 104637.
[119] Amadi F O, Major R P, Baria L R. Origins of gypsum in deep carbonate reservoirs: Implications for hydrocarbon exploration and production[J]. AAPG Bulletin, 2012, 96(2): 375-390.
[120] 陈磊,丁靖,潘伟卿,等. 准噶尔盆地玛湖凹陷西斜坡二叠系风城组云质岩优质储层特征及控制因素[J]. 中国石油勘探,2012,17(3):8-11.

Chen Lei, Ding Jing, Pan Weiqing, et al. Characteristics and controlling factors of high-quality dolomite reservoir in Permian Fengcheng Formation in west slope of Mahu Sag, Junggar Basin[J]. China Petroleum Exploration, 2012, 17(3): 8-11.
[121] Zhang J Z, Wang Z M, Yang H J, et al. Origin and differential accumulation of hydrocarbons in Cambrian sub-salt dolomite reservoirs in Zhongshen area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(1): 40-47.
[122] Alqattan M A, Budd D A. Dolomite and dolomitization of the Permian Khuff-C reservoir in Ghawar field, Saudi Arabia[J]. AAPG Bulletin, 2017, 101(10): 1715-1745.
[123] Du J H, Pan W Q. Accumulation conditions and play targets of oil and gas in the Cambrian subsalt dolomite, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(3): 360-374.
[124] Yang H, Bao H P, Ma Z R. Reservoir-forming by lateral supply of hydrocarbon: A new understanding of the formation of Ordovician gas reservoirs under gypsolyte in the Ordos Basin[J]. Natural Gas Industry B, 2014, 1(1): 24-31.
[125] Liu H, Tan X C, Li Y H, et al. Occurrence and conceptual sedimentary model of Cambrian gypsum-bearing evaporites in the Sichuan Basin, SW China[J]. Geoscience Frontiers, 2018, 9(4): 1179-1191.
[126] Huo F, Wang X Z, Wen H G, et al. Genetic mechanism and pore evolution in high quality dolomite reservoirs of the Changxing-Feixianguan Formation in the northeastern Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2020, 194: 107511.
[127] Pierre F D, Clari P, Natalicchio M, et al. Flocculent layers and bacterial mats in the mudstone interbeds of the Primary Lower Gypsum unit (Tertiary Piedmont Basin, NW Italy): Archives of palaeoenvironmental changes during the Messinian salinity crisis[J]. Marine Geology, 2014, 355: 71-87.
[128] 赵聪. 川西地区雷口坡组微生物岩储层特征[D]. 成都:成都理工大学,2019.

Zhao Cong. Characteristics of microbialites reservoir of Leikoupo Formation in the western Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2019.
[129] Beardsmore G R, Cull J P. Crustal heat flow: A guide to measurement and modeling[M]. Cambridge: Cambridge University of Press, 2001: 324.
[130] 刘文汇,赵恒,刘全有,等. 膏盐岩层系在海相油气成藏中的潜在作用[J]. 石油学报,2016,37(12):1451-1462.

Liu Wenhui, Zhao Heng, Liu Quanyou, et al. Potential role of gypsum strata series in marine hydrocarbon accumulation[J]. Acta Petrolei Sinica, 2016, 37(12): 1451-1462.
[131] 王东旭,曾溅辉,宫秀梅. 膏盐岩层对油气成藏的影响[J]. 天然气地球科学,2005,16(3):329-333.

Wang Dongxu, Zeng Jianhui, Gong Xiumei. Impact of gypsolith on the formation of oil & gas reservoir[J]. Natural Gas Geoscience, 2005, 16(3): 329-333.
[132] 朱光有,张水昌,梁英波,等. TSR对深部碳酸盐岩储层的溶蚀改造:四川盆地深部碳酸盐岩优质储层形成的重要方式[J]. 岩石学报,2006,22(8):2182-2194.

Zhu Guangyou, Zhang Shuichang, Liang Yingbo, et al. Dissolution and alteration of the deep carbonate reservoirs by TSR: An important type of deep-buried high-quality carbonate reservoirs in Sichuan Basin[J]. Acta Petrologica Sinica, 2006, 22(8): 2182-2194.
[133] 王文楷,许国明,宋晓波,等. 四川盆地雷口坡组膏盐岩成因及其油气地质意义[J]. 成都理工大学学报(自然科学版),2017,44(6):697-707.

Wang Wenkai, Xu Guoming, Song Xiaobo, et al. Genesis of gypsum-salt in the Leikoupo Formation and its hydrocarbon significance in the Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2017, 44(6): 697-707.
[134] Zorina S O. Mineralogical composition of the Lower and Upper Kazanian (Mid-Permian) rocks and facies distribution at the Petchischi region (eastern Russian Platform)[J]. Carbonates and Evaporites, 2017, 32(1): 27-43.
[135] Andreeva P V. Middle Devonian (Givetian) supratidal sabkha anhydrites from the Moesian Platform (Northeastern Bulgaria)[J]. Carbonates and Evaporites, 2015, 30(4): 439-449.
[136] 颜开,刘成林,王春连,等. 刚果盆地西南部白垩纪蒸发岩矿物与古环境特征[J]. 岩石矿物学杂志,2021,40(3):525-534.

Yan Kai, Liu Chenglin, Wang Chunlian, et al. Mineral deposition and paleoenvironment of Cretaceous evaporite in Southwestern Congo[J]. Acta Petrologica et Mineralogica, 2021, 40(3): 525-534.
[137] 辛勇光,周进高,邓红婴. 鄂尔多斯盆地南部下奥陶统马家沟组沉积特征[J]. 海相油气地质,2010,15(4):1-5.

Xin Yongguang, Zhou Jingao, Deng Hongying. Sedimentary features of Lower Ordovician Majiagou Formation in the southern part of Ordos Basin[J]. Marine Origin Petroleum Geology, 2010, 15(4): 1-5.
[138] 黄道军,钟寿康,张道锋,等. 蒸发背景沉积序列精细刻画及沉积学解译:以鄂尔多斯盆地中部中奥陶统马五6亚段为例[J]. 古地理学报,2021,23(4):735-755.

Huang Daojun, Zhong Shoukang, Zhang Daofeng, et al. Datailed characterization and interpretation of sedimentary sequences under evaporitic environments: A case from the Ma56 submember of Middle Ordovician in central Ordos Basin[J]. Journal of Palaeogeography (Chinese Edition), 2021, 23(4): 735-755.
[139] Sweet A C, Soreghan G S, Sweet D E, et al. Permian dust in Oklahoma: Source and origin for Middle Permian (Flowerpot-Blaine) redbeds in western Tropical Pangaea[J]. Sedimentary Geology, 2013, 284-285: 181-196.
[140] 李建忠,谷志东,鲁卫华,等. 四川盆地海相碳酸盐岩大气田形成主控因素与勘探思路[J]. 天然气工业,2021,41(6):13-26.

Li Jianzhong, Gu Zhidong, Lu Weihua, et al. Main factors controlling the formation of giant marine carbonate gas fields in the Sichuan Basin and exploration ideas[J]. Natural Gas Industry, 2021, 41(6): 13-26.
[141] Arzaghi S, Khosrow-Tehrani K, Afghah M. Sedimentology and petrography of Paleocene-Eocene evaporites: The Sachun Formation, Zagros Basin, Iran[J]. Carbonates and Evaporites, 2012, 27(1): 43-53.
[142] 吴海燕,梁婷,曹红霞,等. 延安地区奥陶系马家沟组上组合膏盐岩成盐沉积演化模式研究[J]. 地质学报,2020,94(12):3819-3829.

Wu Haiyan, Liang Ting, Cao Hongxia, et al. Study of the salt-formation and sedimentary evolution model of the Upper Ordovician Majiagou Formation in the Yan'an area[J]. Acta Geologica Sinica, 2020, 94(12): 3819-3829.
[143] 裴森奇,王兴志,李荣容,等. 台地边缘滩相埋藏白云石化作用及其油气地质意义:论四川盆地西北部中二叠统栖霞组白云岩的成因[J]. 天然气工业,2021,41(4):22-29.

Pei Senqi, Wang Xingzhi, Li Rongrong, et al. Burial dolomitization of marginal platform bank facies and its petroleum geological implications: The genesis of Middle Permian Qixia Formation dolostones in the northwestern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(4): 22-29.
[144] 刘文栋,钟大康,尹宏,等. 川西北栖霞组超深层白云岩储层特征及主控因素[J]. 中国矿业大学学报,2021,50(2):342-362.

Liu Wendong, Zhong Dakang, Yin Hong, et al. Development characteristics and main controlling factors of ultra-deep dolomite reservoirs of the Qixia Formation in the northwestern Sichuan Basin[J]. Journal of China University of Mining & Technology, 2021, 50(2): 342-362.
[145] 刘志波,邢凤存,胡华蕊,等. 四川盆地下奥陶统桐梓组白云岩多元成因[J]. 地球科学,2021,46(2):583-599.

Liu Zhibo, Xing Fengcun, Hu Huarui, et al. Multi-origin of dolomite in Lower Ordovician Tongzi Formation of Sichuan Basin, western China[J]. Earth Science, 2021, 46(2): 583-599.
[146] Husinec A, Bergström S M. Stable carbon-isotope record of shallow-marine evaporative epicratonic basin carbonates, Ordovician Williston Basin, North America[J]. Sedimentology, 2015, 62(1): 314-349.
[147] 杨威,魏国齐,谢武仁,等. 古隆起在四川盆地台内碳酸盐岩丘滩体规模成储中的作用[J]. 天然气工业,2021,41(4):1-12.

Yang Wei, Wei Guoqi, Xie Wuren, et al. Role of paleouplift in the scale formation of intra-platform carbonate mound-bank body reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(4): 1-12.
[148] 吴兴宁,吴东旭,丁振纯,等. 鄂尔多斯盆地西缘奥陶系白云岩地球化学特征及成因分析[J]. 海相油气地质,2020,25(4):312-318.

Wu Xingning, Wu Dongxu, Ding Zhenchun, et al. Geochemical characteristics and genetic analysis of Ordovician dolomites in the western margin of Ordos Basin[J]. Marine Origin Petroleum Geology, 2020, 25(4): 312-318.
[149] 魏柳斌,陈洪德,郭玮,等. 鄂尔多斯盆地乌审旗—靖边古隆起对奥陶系盐下沉积与储层的控制作用[J]. 石油与天然气地质,2021,42(2):391-400,521.

Wei Liubin, Chen Hongde, Guo Wei, et al. Wushen-Jingbian paleo-uplift and its control on the Ordovician subsalt deposition and reservoirs in Ordos Basin[J]. Oil & Gas Geology, 2021, 42(2): 391-400, 521.
[150] 张永利,苗卓伟,巩恩普,等. 右江盆地都安组白云岩成因及其地质意义[J]. 东北大学学报(自然科学版),2021,42(4):550-560.

Zhang Yongli, Miao Zhuowei, Gong Enpu, et al. Genesis of dolostone in Du’an Formation of Youjiang Basin and its geological significance[J]. Journal of Northeastern University (Natural Science), 2021, 42(4): 550-560.
[151] Fontes J C, Matray J M. Geochemistry and origin of formation brines from the Paris Basin, France: 1. Brines associated with Triassic salts[J]. Chemical Geology, 1993, 109(1/2/3/4): 149-175.
[152] Holland H D. The geologic history of sea water—an attempt to solve the problem[J]. Geochimica et Cosmochimica Acta, 1972, 36(6): 637-651.
[153] Holland H D, Lazar B, McCaffrey M. Evolution of the atmosphere and oceans[J]. Nature, 1986, 320(6057): 27-33.
[154] Harvie C E, Møller N, Weare J H. The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25 ℃[J]. Geochimica et Cosmochimica Acta, 1984, 48(4): 723-751.
[155] Millero F J. Thermodynamic and kinetic properties of natural brines[J]. Aquatic Geochemistry, 2009, 15(1/2): 7-41.
[156] Shalev N, Lazar B, Köbberich M, et al. The chemical evolution of brine and Mg-K-salts along the course of extreme evaporation of seawater- An experimental study[J]. Geochimica et Cosmochimica Acta, 2018, 241: 164-179.
[157] Passey B H, Ji H Y. Triple oxygen isotope signatures of evaporation in lake waters and carbonates: A case study from the western United States[J]. Earth and Planetary Science Letters, 2019, 518: 1-12.
[158] Sarg J F. The sequence stratigraphy, sedimentology, and economic importance of evaporite-carbonate transitions: A review[J]. Sedimentary Geology, 2001, 140(1/2): 9-34.
[159] Adachi N, Ezaki Y, Liu J B, et al. Late Ediacaran Boxonia-bearing stromatolites from the Gobi-Altay, western Mongolia[J]. Precambrian Research, 2019, 334: 105470.
[160] Bischoff K, Sirantoine E, Wilson M E J, et al. Spherulitic microbialites from modern hypersaline lakes, Rottnest Island, western Australia[J]. Geobiology, 2020, 18(6): 725-741.
[161] Schopf J W, Farmer J D, Foster I S, et al. Gypsum-permineralized microfossils and their relevance to the search for life on mars[J]. Astrobiology, 2012, 12(7): 619-633.
[162] Pierre F D, Natalicchio M, Ferrando S, et al. Are the large filamentous microfossils preserved in Messinian gypsum colorless sulfide-oxidizing bacteria?[J]. Geology, 2015, 43(10): 855-858.
[163] Rouchy J M, Monty C. Gypsum microbial sediments: Neogene and modern examples[M]//Riding R E, Awramik S M. Microbial sediments. Berlin, Heidelberg: Springer, 2000: 209-216.
[164] Vai G B, Lucchi F R. Algal crusts, autochthonous and clastic gypsum in a cannibalistic evaporite Basin: A case history from the Messinian of northern Apennines[J]. Sedimentology, 1977, 24(2): 211-244.
[165] Natalicchio M, Pellegrino L, Clari P, et al. Gypsum lithofacies and stratigraphic architecture of a Messinian marginal basin (Piedmont Basin, NW Italy)[J]. Sedimentary Geology, 2021: 106009.
[166] 黄思静,黄喻,兰叶芳,等. 四川盆地东北部晚二叠世—早三叠世白云岩与同期海水锶同位素组成的对比研究[J]. 岩石学报,2011,27(12):3831-3842.

Huang Sijing, Huang Yu, Lan Yefang, et al. A comparative study on strontium isotope composition of dolomites and their coeval seawater in the Late Permian-Early Triassic, NE Sichuan Basin[J]. Acta Petrologica Sinica, 2011, 27(12): 3831-3842.
[167] 马永生,蔡勋育,赵培荣. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘,2011,18(4):181-192.

Ma Yongsheng, Cai Xunyu, Zhao Peirong. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J]. Earth Science Frontiers, 2011, 18(4): 181-192.
[168] 马永生,何治亮,赵培荣,等. 深层—超深层碳酸盐岩储层形成机理新进展[J]. 石油学报,2019,40(12):1415-1425.

Ma Yongsheng, He Zhiliang, Zhao Peirong, et al. A new progress in formation mechanism of deep and ultra-deep carbonate reservoir[J]. Acta Petrolei Sinica, 2019, 40(12): 1415-1425.
[169] 陈莉琼,沈昭国,侯方浩,等. 四川盆地三叠纪蒸发岩盆地形成环境及白云岩储层[J]. 石油实验地质,2010,32(4):334-340,346.

Chen Liqiong, Shen Zhaoguo, Hou Fanghao, et al. Formation environment of triassic evaporate rock basin and dolostone reservoirs in the Sichuan Basin[J]. Petroleum Geology & Experiment, 2010,32(4): 334-340, 346.
[170] 董杰. 四川江油地区下三叠统飞仙关组碳酸盐岩成岩作用研究[D]. 成都:成都理工大学,2018.

Dong Jie. Diagenesis of carbonate rocks of the Lower Triassic Feixianguan Formation in Jiangyou area, Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2018.
[171] 李峰峰,郭睿,刘立峰,等. 伊拉克M油田白垩系Mishrif组潟湖环境碳酸盐岩储集层成因机理[J]. 地球科学,2021,46(1):228-241.

Li Fengfeng, Guo Rui, Liu Lifeng, et al. Genesis of reservoirs of lagoon in the Mishrif Formation, M oilfield, Iraq[J]. Earth Science, 2021, 46(1): 228-241.
[172] 夏青松,黄成刚,杨雨然,等. 四川盆地高石梯—磨溪地区震旦系灯影组储层特征及主控因素[J]. 地质论评,2021,67(2):441-458.

Xia Qingsong, Huang Chenggang, Yang Yuran, et al. Reservoir characteristics and main controlling factors of oil and gas accumulation of Dengying Formation, Sinian System, in Gaoshiti—Moxi area, Sichuan Basin[J]. Geological Review, 2021, 67(2): 441-458.