[1] Xiao S H, Laflamme M. On the eve of animal radiation: Phylogeny, ecology and evolution of the Ediacara biota[J]. Trends in Ecology & Evolution, 2009, 24(1): 31-40.
[2] 袁训来. 新元古代陡山沱期瓮安生物群研究概况[J]. 微体古生物学报,1999,16(3):281-286.

Yuan Xunlai. A review of studies on a Neoproterozoic microfossil assemblage: Weng’an biota at Weng'an, Guizhou, SW China[J]. Acta Micropalaeontologica Sinica, 1999, 16(3): 281-286.
[3] 周传明,袁训来,肖书海. 扬子地台新元古代陡山沱期磷酸盐化生物群[J]. 科学通报,2002,47(22):1734-1739.

Zhou Chuanming, Yuan Xunlai, Xiao Shuhai. Phosphatized biotas from the Neoproterozoic Doushantuo Formation on the Yangtze Platform[J]. Chinese Science Bulletin, 2002, 47(22): 1734-1739.
[4] 尹崇玉,唐烽,刘鹏举,等. 华南埃迪卡拉(震旦)系陡山沱组生物地层学研究的新进展[J]. 地球学报,2009,30(4):421-432.

Yin Chongyu, Tang Feng, Liu Pengju, et al. New advances in the study of biostratigraphy of the Sinian (Ediacaran) Doushantuo Formation in South China[J]. Acta Geoscientia Sinica, 2009, 30(4): 421-432.
[5] 刘鹏举,尹崇玉,唐烽,等. 瓮安生物群中后生动物化石研究进展及问题讨论[J]. 地质论评,2007,53(6):728-735.

Liu Pengju, Yin Chongyu, Tang Feng, et al. Progresses and questions on studying metazoan fossils of the Weng'an biota[J]. Geological Review, 2007, 53(6): 728-735.
[6] 陈寿铭,尹崇玉,刘鹏举,等. 湖北宜昌樟村坪埃迪卡拉系陡山沱组硅磷质结核中的微体化石[J]. 地质学报,2010,84(1):70-77.

Chen Shouming, Yin Chongyu, Liu Pengju, et al. Microfossil assemblage from chert nodules of the Ediacaran Doushantuo Formation in Zhangcunping, northern Yichang, South China[J]. Acta Geologica Sinica, 2010, 84(1): 70-77.
[7] 赵元龙,何明华,陈孟莪,等. 新元古代陡山沱期庙河生物群在贵州江口的发现[J]. 科学通报,2004,49(18):1916-1918.

Zhao Yuanlong, He Minghua, Chen Meng’e, et al. Discovery of a miaohe-type biota from the Neoproterozoic Doushantuo Formation in Jiangkou county, Guizhou province, China[J]. Chinese Science Bulletin, 2004, 49(18): 1916-1918.
[8] Grotzinger J P, Fike D A, Fischer W W. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history[J]. Nature Geoscience, 2011, 4(5): 285-292.
[9] Och L M, Shields-zhou G A. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling[J]. Earth-Science Reviews, 2012, 110(1/2/3/4): 26-57 .
[10] Sahoo S K, Planavsky N J, Kendall B, et al. Ocean oxygenation in the wake of the Marinoan glaciation[J]. Nature, 2012, 489(7417): 546-549.
[11] Fike D A, Grotzinger J P, Pratt L M, et al. Oxidation of the Ediacaran ocean[J]. Nature, 2006, 444(7120): 744-747.
[12] Scott C, Lyons T W, Bekker A, et al. Tracing the stepwise oxygenation of the Proterozoic ocean[J]. Nature, 2008, 452(7186): 456-459.
[13] Fan H F, Wen H J, Han T, et al. Oceanic redox condition during the Late Ediacaran (551-541 Ma), South China[J]. Geochimica et Cosmochimica Acta, 2018, 238: 343-356.
[14] Tostevin R, Clarkson M O, Gangl S, et al. Uranium isotope evidence for an expansion of anoxia in terminal Ediacaran oceans[J]. Earth and Planetary Science Letters, 2019, 506: 104-112.
[15] Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran ocean[J]. Science, 2010, 328(5974): 80-83.
[16] Canfield D E, Poulton S W, Knoll A H, et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry[J]. Science, 2008, 321(5891): 949-952.
[17] Ding W M, Dong L, Sun Y L, et al. Early animal evolution and highly oxygenated seafloor niches hosted by microbial mats[J]. Scientific Reports, 2019, 9(1): 13628.
[18] Zhang F F, Xiao S H, Kendall B, et al. Extensive marine anoxia during the terminal Ediacaran Period[J]. Science Advances, 2018, 4(6): eaan8983.
[19] 侯明才,何亮,徐胜林,等. 镇巴地区灯影组岩石微相研究与沉积环境分析[J]. 西南石油大学学报(自然科学版),2020,42(3):31-42.

Hou Mingcai, He Liang, Xu Shenglin, et al. Analysis of rock types and sedimentary environment of Dengying Formation, Zhenba area[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(3): 31-42.
[20] 周慧,李伟,张宝民,等. 四川盆地震旦纪末期—寒武纪早期台盆的形成与演化[J]. 石油学报,2015,36(3):310-323.

Zhou Hui, Li Wei, Zhang Baomin, et al. Formation and evolution of Upper Sinian to Lower Cambrian intraplatformal basin in Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(3): 310-323.
[21] 李忠雄,陆永潮,王剑,等. 中扬子地区晚震旦世—早寒武世沉积特征及岩相古地理[J]. 古地理学报,2004,6(2):151-162.

Li Zhongxiong, Lu Yongchao, Wang Jian, et al. Sedimentary characteristics and lithofacies palaeogeography of the Late Sinian and Early Cambrian in Middle Yangtze region[J]. Journal of Palaeogeography, 2004, 6(2): 151-162.
[22] 周进高,张建勇,邓红婴,等. 四川盆地震旦系灯影组岩相古地理与沉积模式[J]. 天然气工业,2017,37(1):24-31.

Zhou Jingao, Zhang Jianyong, Deng Hongying, et al. Lithofacies paleogeography and sedimentary model of Sinian Dengying Fm in the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(1): 24-31.
[23] Wang J, Li Z X. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1/2/3/4): 141-158.
[24] Jiang G Q, Shi X Y, Zhang S H, et al. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in South China[J]. Gondwana Research, 2011, 19(4): 831-849.
[25] McFadden K A, Xiao S H, Zhou C M, et al. Quantitative evaluation of the biostratigraphic distribution of acanthomorphic acritarchs in the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China[J]. Precambrian Research, 2009, 173(1/2/3/4): 170-190.
[26] McFadden K A, Huang J, Chu X L, et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(9): 3197-3202.
[27] Kunimitsu Y, Setsuda Y, Furuyama S, et al. Ediacaran chemostratigraphy and paleoceanography at a shallow marine setting in northwestern Hunan province, South China[J]. Precambrian Research, 2011, 191(3/4): 194-208.
[28] Zhu M Y, Zhang J M, Yang A H. Integrated Ediacaran (Sinian) chronostratigraphy of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 7-61.
[29] 安志辉,童金南,叶琴,等. 湖北宜昌樟村坪地区陡山沱组地层划分与对比[J]. 地球科学,2018,43(7):2206-2221.

An Zhihui, Tong Jinnan, Ye Qin, et al. Stratigraphic division and correlation of Ediacaran Doushantuo Formation in Zhangcunping area, Yichang, Hubei province[J]. Earth Science, 2018, 43(7): 2206-2221.
[30] Liu P J, Chen S M, Zhu M Y, et al. High-resolution biostratigraphic and chemostratigraphic data from the Chenjiayuanzi section of the Doushantuo Formation in the Yangtze Gorges area, South China: Implication for subdivision and global correlation of the Ediacaran System[J]. Precambrian Research, 2014, 249: 199-214.
[31] Wang J G, Chen D Z, Wang D, et al. Petrology and geochemistry of chert on the marginal zone of Yangtze Platform, western Hunan, South China, during the Ediacaran-Cambrian transition[J]. Sedimentology, 2012, 59(3): 809-829.
[32] Fan H F, Wen H J, Zhu X K, et al. Hydrothermal activity during Ediacaran-Cambrian transition: Silicon isotopic evidence[J]. Precambrian Research, 2013, 224: 23-35.
[33] Wang X Q, Shi X Y, Jiang G Q, et al. Organic carbon isotope gradient and ocean stratification across the Late Ediacaran-Early Cambrian Yangtze Platform[J]. Science China Earth Sciences, 2014, 57(5): 919-929.
[34] Jiang G Q, Kaufman A J, Christie-Blick N, et al. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ 13C gradient[J]. Earth and Planetary Science Letters, 2007, 261(1/2): 303-320.
[35] Wang J B, He Z L, Zhu D Y, et al. Petrological and geochemical characteristics of the botryoidal dolomite of Dengying Formation in the Yangtze Craton, South China: Constraints on terminal Ediacaran “dolomite seas”[J]. Sedimentary Geology, 2020, 406: 105722.
[36] Zhao D F, Hu G, Wang L C, et al. Sedimentary characteristics and origin of dolomitic ooids of the terminal Ediacaran Dengying Formation at Yulin (Chongqing, South China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 544: 109601.
[37] 斯春松,郝毅,周进高,等. 四川盆地灯影组储层特征及主控因素[J]. 成都理工大学学报(自然科学版),2014,41(3):266-273.

Si Chunsong, Hao Yi, Zhou Jingao, et al. Characteristics and controlling factors of reservoir in Sinian Dengying Formation, Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(3): 266-273.
[38] 宋金民,刘树根,李智武,等. 四川盆地上震旦统灯影组微生物碳酸盐岩储层特征与主控因素[J]. 石油与天然气地质,2017,38(4):741-752.

Song Jinmin, Liu Shugen, Li Zhiwu, et al. Characteristics and controlling factors of microbial carbonate reservoirs in the Upper Sinian Dengying Formation in the Sichuan Basin, China[J]. Oil & Gas Geology, 2017, 38(4): 741-752.
[39] 刘怀仁,刘明星,胡登新,等. 川西南上震旦统灯影组沉积期的暴露标志及其意义[J]. 岩相古地理,1991(5):1-10.

Liu Huairen, Liu Mingxing, Hu Dengxin, et al. The exposure indicators formed during the deposition of the Upper Sinian Dengying Formation in southwestern Sichuan and their significance[J]. Sedimentary Geology and Tethyan Geology, 1991(5): 1-10.
[40] 罗平,王石,李朋威,等. 微生物碳酸盐岩油气储层研究现状与展望[J]. 沉积学报,2013,31(5):807-823.

Luo Ping, Wang Shi, Li Pengwei, et al. Review and prospectives of microbial carbonate reservoirs[J]. Acta Sedimentologica Sinica, 2013, 31(5): 807-823.
[41] 梅冥相. 从凝块石概念的演变论微生物碳酸盐岩的研究进展[J]. 地质科技情报,2007,26(6):1-9.

Mei Mingxiang. Discussion on advances of microbial carbonates from the terminological change of thrombolites[J]. Geological Science and Technology Information, 2007, 26(6): 1-9.
[42] 梅冥相,孟庆芬,刘智荣. 微生物形成的原生沉积构造研究进展综述[J]. 古地理学报,2007,9(4):353-367.

Mei Mingxiang, Meng Qingfen, Liu Zhirong. Overview of advances in studies of primary sedimentary structures formed by microbes[J]. Journal of Palaeogeography, 2007, 9(4): 353-367.
[43] Lawrence M G, Greig A, Collerson K D, et al. Rare earth element and yttrium variability in South East Queensland waterways[J]. Aquatic Geochemistry, 2006, 12(1): 39-72.
[44] Riding R. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(Suppl.1): 179-214.
[45] Dupraz C, Reid R P, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96(3): 141-162.
[46] Riding R. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition[J]. Geobiology, 2006, 4(4): 299-316.
[47] Grotzinger J, Al-Rawahi Z. Depositional facies and platform architecture of microbialite-dominated carbonate reservoirs, Ediacaran-Cambrian ara group, sultanate of Oman[J]. AAPG Bulletin, 2014, 98(8): 1453-1494.
[48] Arvidson R S, Mackenzie F T. The dolomite problem: Control of precipitation kinetics by temperature and saturation state[J]. American Journal of Science, 1999, 299(4): 257-288.
[49] van Smeerdijk Hood A, Wallace M W. Neoproterozoic marine carbonates and their paleoceanographic significance[J]. Global and Planetary Change, 2018, 160: 28-45.
[50] Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1/2/3/4): 27-49.
[51] Ling H F, Feng H Z, Pan J Y, et al. Carbon isotope variation through the Neoproterozoic Doushantuo and Dengying Formations, South China: Implications for chemostratigraphy and paleoenvironmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 158-174.
[52] Halverson G P, Wade B P, Hurtgen M T, et al. Neoproterozoic chemostratigraphy[J]. Precambrian Research, 2010, 18(4): 337-350.
[53] Bolhar R, van Kranendonk M J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates[J]. Precambrian Research, 2007, 155(3/4): 229-250.
[54] Nothdurft L D, Webb G E, Kamber B S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, western Australia: Confirmation of a seawater REE proxy in ancient limestones[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 263-283.
[55] Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557-1565.
[56] 黄思静,张雪花,刘丽红,等. 碳酸盐成岩作用研究现状与前瞻[J]. 地学前缘,2009,16(5):219-231.

Huang Sijing, Zhang Xuehua, Liu Lihong, et al. Progress of research on carbonate diagenesis[J]. Earth Science Frontiers, 2009, 16(5): 219-231.
[57] Kaufman A J, Jacobsen S B, Knoll A H. The Vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate[J]. Earth and Planetary Science Letters, 1993, 120(3/4): 409-430.
[58] Brasier M D, Shields G, Kuleshov V N, et al. Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic-Early Cambrian of southwest Mongolia[J]. Geological Magazine, 1996, 133(4): 445-485.
[59] Brand U, Veizer J. Chemical diagenesis of a multicomponent carbonate system - 1: Trace elements[J]. SEPM Journal of Sedimentary Research, 1980, 50(4): 1219-1236.
[60] Ling H F, Chen X, Li D, et al. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater[J]. Precambrian Research, 2013, 225: 110-127.
[61] Ward J F, Verdel C, Campbell M J, et al. Rare earth element geochemistry of Australian Neoproterozoic carbonate: Constraints on the Neoproterozoic oxygenation events[J]. Precambrian Research, 2019, 335: 105471.
[62] Tostevin R, Wood R A, Shields G A, et al. Low-oxygen waters limited habitable space for early animals[J]. Nature Communications, 2016, 7: 12818.
[63] Zhang P, Hua H, Liu W G. Isotopic and REE evidence for the paleoenvironmental evolution of the Late Ediacaran Dengying Section, Ningqiang of Shaanxi province, China[J]. Precambrian Research, 2014, 242: 96-111.
[64] Haley B A, Klinkhammer G P, McManus J. Rare earth elements in pore waters of marine sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265-1279.
[65] Sholkovitz E R, Elderfield H, Szymczak R, et al. Island weathering: River sources of rare earth elements to the western Pacific Ocean[J]. Marine Chemistry, 1999, 68(1/2): 39-57.
[66] Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater[J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725.
[67] Cui H, Kaufman A J, Xiao S, et al. Environmental context for the terminal Ediacaran biomineralization of animals[J]. Geobiology, 2016, 14(4): 344-363.
[68] Babcock L E, Peng S C, Brett C E, et al. Global climate, sea level cycles, and biotic events in the Cambrian Period[J]. Palaeoworld, 2015, 24(1/2): 5-15.
[69] Guo Q J, Shields G A, Liu C Q, et al. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the Early Cambrian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 194-216.
[70] Goldberg T, Strauss H, Guo Q J, et al. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 175-193.
[71] Schröder S, Grotzinger J P. Evidence for anoxia at the Ediacaran -Cambrian boundary: The record of redox-sensitive trace elements and rare earth elements in Oman[J]. Journal of the Geological Society, 2007, 164: 175-187.
[72] Jiang G Q, Wang X Q, Shi X Y, et al. The origin of decoupled carbonate and organic carbon isotope signatures in the Early Cambrian (ca. 542-520 Ma) Yangtze platform[J]. Earth and Planetary Science Letters, 2012, 317-318: 96-110.