[1] Chen F H, Yu Z C, Yang M L, et al. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3/4): 351-364.
[2] Chen F H, Jia J, Chen J H, et al. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the Late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China[J]. Quaternary Science Reviews, 2016, 146: 134-146.
[3] 余莺潇,王乃昂,隆浩,等. 巴丹吉林沙漠东南缘砂楔年代及其环境意义[J]. 科学通报,2017,62(30):3461-3469.

Yu Yingxiao, Wang Naiang, Long Hao, et al. The age of sand wedges and its environmental significance at the southeast edge of Badain Jaran Desert[J]. Chinese Science Bulletin, 2017, 62(30): 3461-3469.
[4] 伏梦璇,于世永,吴金甲,等. 巴丹吉林沙漠南缘高台盐湖记录的中晚全新世气候变化[J]. 海洋地质与第四纪地质,2020,40(4):192-203.

Fu Mengxuan, Yu Shiyong, Wu Jinjia, et al. Mid-to-Late Holocene climate changes on the southern margin of the Badain Jaran Desert: Evidence from the Gaotai Lake sediments[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 192-203.
[5] 鞠远江,刘耕年. 孢粉记录揭示的4 000 a BP来乌鲁木齐河源区气候环境变化[J]. 冰川冻土,2004,26(2):166-170.

Ju Yuanjiang, Liu Gengnian. Climate and environment changes inferred from pollen records since 4 000 a BP in the headwaters of the Ürümqi River, Tianshan[J]. Journal of Glaciology and Geocryology, 2004, 26(2): 166-170.
[6] 陈发虎,吴薇,朱艳,等. 阿拉善高原中全新世干旱事件的湖泊记录研究[J]. 科学通报,2004,49(1):1-9.

Chen Fahu, Wu Wei, Zhu Yan, et al. Lake records of drought events in the Alxa Plateau during the Middle Holocene [J]. Chinese Science Bulletin, 2004, 49(1): 1-9.
[7] Liu L N, Wang W, Chen D X, et al. Soil-surface pollen assemblages and quantitative relationships with vegetation and climate from the Inner Mongolian Plateau and adjacent mountain areas of northern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 543: 109600.
[8] Chen F H, Chen X M, Chen J H, et al. Holocene vegetation history, precipitation changes and Indian summer monsoon evolution documented from sediments of Xingyun Lake, south-west China[J]. Journal of Quaternary Science, 2014, 29(7): 661-674.
[9] Lu K Q, Qin F, Li Y, et al. A new approach to interpret vegetation and ecosystem changes through time by establishing a correlation between surface pollen and vegetation types in the eastern central Asian desert[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 551: 109762.
[10] Huang X Z, Chen C Z, Jia W N, et al. Vegetation and climate history reconstructed from an alpine lake in central Tienshan Mountains since 8.5 ka BP[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 432: 36-48.
[11] Xu Q H, Zhang S R, Gaillard M J, et al. Studies of modern pollen assemblages for pollen dispersal- deposition- preservation process understanding and for pollen-based reconstructions of past vegetation, climate, and human impact: A review based on case studies in China[J]. Quaternary Science Reviews, 2016, 149: 151-166.
[12] An C B, Feng Z D, Barton L. Dry or humid? Mid-Holocene humidity changes in arid and semi-arid China[J]. Quaternary Science Reviews, 2006, 25(3/4): 351-361.
[13] 段凤莲,王多民. 贺兰山地区近5年气候变化特征分析[J]. 现代农业,2019(5):100-102.

Duan Fenglian, Wang Duomin. Characteristics of climate change in Helan Mountain area in recent 5 years [J]. Modern Agriculture, 2019(5): 100-102.
[14] 苏俊礼. 巴丹吉林沙漠和腾格里沙漠降水特征研究[D]. 兰州:兰州大学,2016.

Su Junli. A study of precipitation characteristics in the Badain Juran Desert and Tengger Desert[D]. Lanzhou: Lanzhou University, 2016.
[15] 康延臻,陈世红,张莹,等. 2008—2013年库姆塔格沙漠及阿尔金山降水特征[J]. 中国沙漠,2015,35(1):203-210.

Kang Yanzhen, Chen Shihong, Zhang Ying, et al. Precipition during 2008-2013 in the Kumtagh Desert and Altun Mountains[J]. Journal of Desert Research, 2015, 35(1): 203-210.
[16] 宁凯. 巴丹吉林沙漠湖泊沉积孢粉和正构烷烃记录的全新世环境变化[D]. 兰州:兰州大学,2018.

Ning Kai. Holocene environmental evolution implied by pollen and n-alkanes in Groundwater Recharge Lakes, Badain Jaran Desert, northwestern China[D]. Lanzhou: Lanzhou University, 2018.
[17] 尹林克. 中国温带荒漠区的植物多样性及其易地保护[J]. 生物多样性,1997,5(1):40-48.

Yin Linke. Diversity and ex-situ conservation of plants in the desert region of temperate zone in China[J]. Chinese Biodiversity, 1997, 5(1): 40-48.
[18] 张玉. 巴丹吉林沙漠南北边缘植被群落特征与土壤理化性质研究[D]. 西安:陕西师范大学,2014.

Zhang Yu. Characteristics of vegetation community and soil physicochemical properties in the north and south margin of Badain Jaran Desert [D]. Xi'an: Shaanxi Normal University, 2014.
[19] 马全林,张德奎,袁宏波,等. 乌兰布和沙漠植被数量分类及环境解释[J]. 干旱区资源与环境,2019,33(9):160-167.

Ma Quanlin, Zhang Dekui, Yuan Hongbo, et al. Numerical classification and environmental interpretation of desert vegetation in the Ulan Buh Desert[J]. Journal of Arid Land Resources and Environment, 2019, 33(9): 160-167.
[20] 张明理. 中国西北干旱区和中亚植物区系地理研究[J]. 生物多样性,2017,25(2):147-155.

Zhang Mingli. A review on the floristic phytogeography in arid northwestern China and Central Asia[J]. Biodiversity Science, 2017, 25(2): 147-155.
[21] 侯学煜. 1:1000000中国植被图集[M]. 北京:科学出版社,2001:1-260.

Hou Xueyu. 1:1000000 Vegetation atlas of China[M]. Beijing: Science Press, 2001: 1-260.
[22] 王伏雄,钱南芬,张玉龙,等. 中国植物花粉形态[M]. 2版. 北京:科学出版社,1995:1-276.

Wang Fuxiong, Qian Nanfen, Zhang Yulong, et al. Pollen flora of China[M]. 2nd ed. Beijing: Science Press, 1995: 1-276.
[23] Zhao H, Huang W, Xie T T, et al. Optimization and evaluation of a monthly air temperature and precipitation gridded dataset with a 0.025° spatial resolution in China during 1951-2011[J]. Theoretical and Applied Climatology, 2019, 138(1/2): 491-507.
[24] Dufrêne M, Legendre P. Species assemblages and indicator species: The need for a flexible asymmetrical approach[J]. Ecological Monographs, 1997, 67(3): 345-366.
[25] Roberts D W. Labdsv: Ordination and multivariate analysis for ecology[EB/OL]. http://cran.r-project.org/package=labdsv, 2019-08-04.
[26] 李宜垠,张新时,周广胜,等. 中国北方几种常见表土花粉类型与植被的数量关系[J]. 科学通报,2000,45(7):761-765.

Li Yiyin, Zhang Xinshi, Zhou Guangsheng, et al. Quantitative relationships between several common surface pollen types and vegetation in northern China [J]. Chinese Science Bulletin, 2000, 45(7): 761-765.
[27] Oksanen J, Blanchet F G, Friendly M, et al. Vegan community ecology package version 2.5-7 November 2020 [EB/OL]. https://cran.r-project.org/package=vegan, 2020-11-28.
[28] Hill M O, Gauch H G, Jr. Detrended correspondence analysis: An improved ordination technique[J]. Vegetatio, 1980, 42(1/2/3): 47-58.
[29] ter Braak C J F, Šmilauer P. Canoco reference manual and user’s guide: Software for ordination, version 5.0[M]. Ithaca: Microcomputer Power, 2012: 1-30.
[30] Cao X Y, Herzschuh U, Telford R J, et al. A modern pollen-climate dataset from China and Mongolia: Assessing its potential for climate reconstruction[J]. Review of Palaeobotany and Palynology, 2014, 211: 87-96.
[31] Herzschuh U, Birks H J B, Mischke S, et al. A modern pollen-climate calibration set based on lake sediments from the Tibetan Plateau and its application to a Late Quaternary pollen record from the Qilian Mountains[J]. Journal of Biogeography, 2010, 37(4): 752-766.
[32] Overpeck J T, Webb III T, Prentice I C. Quantitative interpretation of fossil pollen spectra: Dissimilarity coefficients and the method of modern analogs[J]. Quaternary Research, 1985, 23(1): 87-108.
[33] Juggins S. Rioja: Analysis of quaternary science data[EB/OL]. https://cran.r-project.org/package=rioja, 2020-10-28.
[34] Markel E R, Booth R K, Qin Y M. Testate amoebae and δ13C of Sphagnum as surface-moisture proxies in Alaskan peatlands[J]. The Holocene, 2010, 20(3): 463-475.
[35] Charman D J, Blundell A, Alm J. A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands[J]. Journal of Quaternary Science, 2007, 22(3): 209-221.
[36] 姚付龙,马春梅,朱诚,等. 中国西天山北坡表土花粉与区域植被关系[J]. 古生物学报,2021,60(3):471-482.

Yao Fulong, Ma Chunmei, Zhu Cheng, et al. Relationship between surface pollen and vegetation on the northern slope of west Tianshan Mountains, China[J]. Acta Palaeontologica Sinica, 2021, 60(3): 471-482.
[37] 杨庆华,杨振京,张芸,等. 新疆夏尔希里自然保护区表土孢粉与植被的关系[J]. 干旱区地理,2019,42(5):986-997.

Yang Qinghua, Yang Zhenjing, Zhang Yun, et al. Relationship between surface sporepollen and modern vegetation in Xarxili Nature Reserve of Xinjiang[J]. Arid Land Geography, 2019, 42(5): 986-997.
[38] 李月丛,许清海,阳小兰,等. 中国草原区主要群落类型花粉组合特征[J]. 生态学报,2005,25(3):555-564.

Li Yuecong, Xu Qinghai, Yang Xiaolan, et al. Pollen assemblages of major steppe communities in China[J]. Acta Ecologica Sinica, 2005, 25(3): 555-564.
[39] 郎青,姚付龙,杨海军. 新疆中天山山间盆地表土花粉谱特征[J]. 生态学杂志,2020,39(8):2518-2527.

Lang Qing, Yao Fulong, Yang Haijun. Surface pollen spectrum in intermountain basin of Middle Tianshan, Xinjiang, China[J]. Chinese Journal of Ecology, 2020, 39(8): 2518-2527.
[40] 路晶芳,张克信,宋博文,等. 柴达木盆地大红沟地区始新世—上新世孢粉记录及气候变化[J]. 现代地质,2020,34(4):732-744.

Lu Jingfang, Zhang Kexin, Song Bowen, et al. Paleogene-Neogene pollen and climate change in Dahonggou region of Qaidam Basin[J]. Geoscience, 2020, 34(4): 732-744.
[41] 罗传秀,潘安定,郑卓. 西北干旱地区表土孢粉与植被关系研究进展[J]. 干旱区研究,2006,23(2):314-319.

Luo Chuanxiu, Pan Anding, Zheng Zhuo. Progresses about the studies on the relationship between topsoil spore-pollen and vegetation in arid areas of Northwest China[J]. Arid Zone Research, 2006, 23(2): 314-319.
[42] 朱艳,陈发虎,刘虎俊,等. 石羊河流域空气传播孢粉的初步研究[J]. 兰州大学学报(自然科学版),2003,39(2):100-105.

Zhu Yan, Chen Fahu, Liu Hujun, et al. Preliminary studies on the air-borne pollen in the Shiyang River drainage, arid China[J]. Journal of Lanzhou University (Natural Sciences), 2003, 39(2): 100-105.
[43] 朱艳,程波,陈发虎,等. 石羊河流域现代孢粉传播研究[J]. 科学通报,2004,49(1):15-21.

Zhu Yan, Cheng Bo, Chen Fahu, et al. Study on modern pollen dispersal in the Shiyang River Basin [J]. Chinese Science Bulletin, 2004, 49(1): 15-21.
[44] 关文彬. 中国东北地区白桦林植被生态学的研究:桦属植物与中国白桦林的地理分布[J]. 北京林业大学学报,1998,20(4):104-109.

Guan Wenbin. Vegetation ecology on communities dominated by Betula platyphylla in northeast of China: Distribution of communities dominated by Betula platyphylla [J]. Journal of Beijing Forestry University, 1998, 20(4): 104-109.
[45] 郑敬刚,董东平,赵登海,等. 贺兰山西坡植被群落特征及其与环境因子的关系[J]. 生态学报,2008,28(9):4559-4567.

Zheng Jinggang, Dong Dongping, Zhao Denghai, et al. Relationship between vegetation community characteristics and its environmental factors in the west slope of Helan Mountain[J]. Acta Ecologica Sinica, 2008, 28(9): 4559-4567.
[46] Guo C, Ma Y Z, Li D D, et al. Modern pollen and its relationship with vegetation and climate in the Mu Us Desert and surrounding area, northern China: Implications of palaeoclimatic and palaeocological reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 547: 109699.
[47] Luo C X, Zheng Z, Tarasov P, et al. A potential of pollen-based climate reconstruction using a modern pollen-climate dataset from arid northern and western China[J]. Review of Palaeobotany and Palynology, 2010, 160(3/4): 111-125.
[48] Li Y C, Xu Q H, Liu J S, et al. A transfer-function model developed from an extensive surface-pollen data set in northern China and its potential for palaeoclimate reconstructions[J]. The Holocene, 2007, 17(7): 897-905.
[49] Xu Q H, Li Y C, Bunting M J, et al. The effects of training set selection on the relationship between pollen assemblages and climate parameters: Implications for reconstructing past climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 289(1/2/3/4): 123-133.
[50] ter Braak C J F, van Dame H. Inferring pH from diatoms: A comparison of old and new calibration methods[J]. Hydrobiologia, 1989, 178(3): 209-223.
[51] Telford R J, Birks H J B. The secret assumption of transfer functions: Problems with spatial autocorrelation in evaluating model performance[J]. Quaternary Science Reviews, 2005, 24(20/21): 2173-2179.