[1] Riding R. Classification of microbial carbonates[M]//Riding R. Calcareous algae and stromatolites. Berlin, Heidelberg: Springer, 1991: 21-51.
[2] Riding R, Fan J S. Ordovician calcified algae and cyanobacteria, northern Tarim Basin subsurface, China[J]. Palaeontology, 2001, 44(4): 783-810.
[3] Riding R. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time[J]. Sedimentary Geology, 2006, 185(3/4): 229-238.
[4] Riding R. Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories[J]. Earth-Science Reviews, 2002, 58(1/2): 163-231.
[5] 梅冥相. 微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J]. 地学前缘,2007,14(5):222-234.

Mei Mingxiang. Revised classification of microbial carbonates: Complementing the classification of limestones[J]. Earth Science Frontiers, 2007, 14(5): 222-234.
[6] Aitken J D. Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta[J]. Journal of Sedimentary Petrology, 1967, 37(4): 1163-1178.
[7] Aitken J D, Narbonne G M. Two occurrences of Precambrian thrombolites from the Mackenzie Mountains, northwestern Canada[J]. Palaios, 1989, 4(4): 384-388.
[8] Shapiro R S. A comment on the systematic confusion of thrombolites[J]. Palaios, 2000, 15(2): 166-169.
[9] Feldmann M, McKenzie J A. Stromatolite-thrombolite associations in a modern environment, Lee Stocking Island, Bahamas[J]. Palaios, 1998, 13(2): 201-212.
[10] Planavsky N, Ginsburg R N. Taphonomy of modern marine Bahamian microbialites[J]. Palaios, 2009, 24(1/2): 5-17.
[11] Dupraz C, Reid R P, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96(3): 141-162.
[12] Tang D J, Shi X Y, Jiang G Q, et al. Environment controls on Mesoproterozoic thrombolite morphogenesis: A case study from the North China Platform[J]. Journal of Palaeogeography, 2013, 2(3): 275-296.
[13] Tang D J, Shi X Y, Jiang G Q, et al. Microfabrics in Mesoproterozoic microdigitate stromatolites: Evidence of biogenicity and organomineralization at micron and nanometer scales[J]. Palaios, 2013, 28(3): 178-194.
[14] Arp G, Helms G, Karlinska K, et al. Photosynthesis versus exopolymer degradation in the formation of microbialites on the Atoll of Kiritimati, Republic of Kiribati, Central Pacific[J]. Geomicrobiology Journal, 2012, 29(1): 29-65.
[15] 梅冥相,Latif K,刘丽,等. 光合作用生物膜建造的凝块:来自于辽东半岛芙蓉统长山组凝块石生物丘中的一些证据[J]. 古地理学报,2019,21(2):254-277.

Mei Mingxiang, Latif K, Liu Li, et al. Clots built by photosynthetic biofilms: Evidences from thrombolite bieherms of the Changshan Formation of Cambrian Furongian in Liaodong Peninsula[J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(2): 254-277.
[16] 梅冥相. 微生物席的特征和属性:微生物席沉积学的理论基础[J]. 古地理学报,2014,16(3):285-304.

Mei Mingxiang. Feature and nature of microbial-mat: Theoretical basis of microbial-mat sedimentology[J]. Journal of Palaeogeography (Chinese Edition), 2014, 16(3): 285-304.
[17] 梅冥相. 微生物席沉积学:一个年轻的沉积学分支[J]. 地球科学进展,2011,26(6):586-597.

Mei Mingxiang. Microbial-mat sedimentology: A young branch from sedimentology[J]. Advances in Earth Science, 2011, 26(6): 586-597.
[18] 陈云峰,吴淦国,王根厚. 北京周口店豹皮灰岩的变形特征[J]. 地质通报,2007,26(6):769-775.

Chen Yunfeng, Wu Ganguo, Wang Genhou. Deformation characteristics of leopard limestone in Zhoukoudian, Beijing, China[J]. Geological Bulletin of China, 2007, 26(6): 769-775.
[19] 梅冥相. 华北寒武系二级海侵背景下的沉积趋势及层序地层序列:以北京西郊下苇甸剖面为例[J]. 中国地质,2011,38(2):317-337.

Mei Mingxiang. Depositional trends and sequence-stratigraphic successions under the Cambrian second-order transgressive setting in the North China Platform: A case study of the Xiaweidian section in the western suburb of Beijing[J]. Geology in China, 2011, 38(2): 317-337.
[20] 龙刚,黄萍,林剑怀,等. 徐州地区寒武系豹皮灰岩的岩性特征及其成因机制分析[J]. 地质学刊,2013,37(1):67-70.

Long Gang, Huang Ping, Lin Jianhuai, et al. Lithologic characteristics of leopard limestone in Cambrian Period and analysis of its formation mechanism in Xuzhou northern [J]. Journal of Geology, 2013, 37(1): 67-70.
[21] 李波,颜佳新,薛武强,等. 四川广元地区中二叠世斑状白云岩成因及地质意义[J]. 地球科学:中国地质大学学报,2012,37(增刊2):136-146.

Li Bo, Yan Jiaxin, Xue Wuqiang, et al. Origin of patchy dolomite and its geological signification from Middle Permian, Guangyuan, Sichuan province[J]. Earth Science:Journal of China University of Geosciences, 2012, 37(Suppl. 2): 136-146.
[22] Rowland S M, Shapiro R S. Reef patterns and environmental influences in the Cambrian and earliest Ordovician[M]//Kiessling W, Flügel E, Golonka J. Phanerozoic reef patterns. Tulsa: SEPM Special Publication, 2002: 95-128.
[23] Feng Z Z, Chen J X, Wu S H. Lithofacies palaeogeography of Early Paleozoic of North China Platform[J]. Acta Sedimentologica Sinica, 1989, 7(4): 16-55.
[24] 白莹,罗平,刘伟,等. 北京西郊丁家滩剖面寒武系第二统昌平组核形石特征及成因[J]. 现代地质,2019,33(3):587-597.

Bai Ying, Luo Ping, Liu Wei, et al. Characteristics and origin of oncolite from Changping Formation in the Series 2 of Cambrian in western Beijing[J]. Geoscience, 2019, 33(3): 587-597.
[25] 梅冥相,胡媛,孟庆芬. 大连金州湾寒武系毛庄组微生物碳酸盐岩生物丘复合体[J]. 地质学报, 2020, 94(2): 375-395.

Mei Mingxiang, Hu Yuan, Meng Qingfen. Bioherm complex madding up of microbial carbonates in the Cambrian Maozhuang Formation, Jinzhouwan section in the Dalian city of Liaoning province in northeastern China[J]. Acta Geologica Sinica, 94(2): 375-395.
[26] 杨孝群,李忠. 微生物碳酸盐岩沉积学研究进展:基于第33届国际沉积学会议的综述[J]. 沉积学报,2018,36(4):639-650.

Yang Xiaoqun, Li Zhong. Research progress in sedimentology of microbial carbonate rocks: A review based on the 33rd International Sedimentological Congress[J]. Acta Sedimentologica Sinica, 2018, 36(4): 639-650.
[27] 韩作振,陈吉涛,迟乃杰,等. 微生物碳酸盐岩研究:回顾与展望[J]. 海洋与第四纪地质,2009,29(4):29-38.

Han Zuozhen, Chen Jitao, Chi Naijie, et al. Microbial carbonates: A review and perspectives[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 29-38.
[28] Tucker M, Perri E, Slowakiewicz M, et al. Mineral precipitates in modern microbial mats: Crystallites, spheroids, bacteria and viruses[C]//Proceedings of the 33rd IAS international meeting of sedimentology. Toulouse: IMS, 2017.
[29] Pace A, Bourillot R, Bouton A, et al. Initiation of Stromatolite Formation at the interface of oxygenic-anoxygenic phoyosynthesis[C]//Proceedings of the 33rd IAS international meeting of sedimentology. Toulouse: IMS, 2017.
[30] Merz-Preiß M. Calcification in cyanobacteria[M]//Riding R E, Awramik S M. Microbial sediments. Berlin, Heidelberg: Springer, 2000: 50-56.
[31] Pentecost A, Riding R. Calcification in cyanobacteria[M]//Leadbeater B S C, Riding R. Biomineralization of Lower plants and animals. Oxford: Oxford University Press, 1986: 73-90.
[32] Thompson J B, Ferris F G. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water[J]. Geology, 1990, 18(10): 995-998.
[33] Merz M U E. The biology of carbonate precipitation by cyanobacteria[J]. Facies, 1992, 26(1): 81-101.
[34] Arp G, Reimer A, Reitner J. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans[J]. Science, 2001, 292(5522): 1701-1704.
[35] Riding R. An atmospheric stimulus for cyanobacterial-bioinduced calcification ca. 350 million years ago?[J]. Palaios, 2009, 24(10): 685-696.
[36] 项礼文, 朱兆玲, 李善姬, 等. 中国地层典(寒武系) [M]. 北京:地质出版社,2000:1-95.

Xiang Liwen, Zhu Zhaoling, Li Shanji, et al. Stratigraphical Lexicon of China: Cambrian[M]. Beijing: Geological Publishing House, 2000: 1-95.
[37] 卢衍豪.中国的寒武系[M]. 北京:科学出版社,1962:1-119.

Lu Yanhao. Cambrian in China[M]. Beijing: Science Press, 1962: 1-119.
[38] 卢衍豪, 朱兆玲, 钱义元, 等. 中国寒武纪地层对比表及说明书[C]//中国各纪地层对比表及说明书. 北京:科学出版社, 1982:28-54. [

Lu Yanhao, Zhu Zhaoling, Qian Yiyuan, et al. Stratigraphical correlation tables and their directions for the Cambrian in China[C]// Stratigraphical Correlation Tables and Their Directions for Each Periods. Beijing: Science Press, 1982:28-54.]
[39] 史晓颖,陈建强,梅仕龙. 华北地台东部寒武系层序地层年代格架[J]. 地学前缘,1997,4(3/4):161-173.

Shi Xiaoying, Chen Jianqiang, Mei Shilong. Cambrian sequence chronostratigraphic frame work of the North China Platform[J]. Earth Science Frontiers, 1997, 4(3/4): 161-173.
[40] Peng S C. The newly-developed Cambrian biostratigraphic succession and chronostratigraphic scheme for South China[J]. Chinese Science Bulletin, 2009, 54(22): 4161-4170.
[41] Reid R P, Macintyre I G. Microboring versus recrystallization: Further insight into the micritization process[J]. Journal of Sedimentary Research, 2000, 70(1): 24-28.
[42] Pratt B R. Calcification of cyanobacterial filaments: Girvanella and the origin of Lower Paleozoic lime mud[J]. Geology, 2001, 29(9): 763-766.
[43] Perry C T. Grain susceptibility to the effects of microboring: Implications for the preservation of skeletal carbonates[J]. Sedimentology, 1998, 45(1): 39-51.
[44] Golubic S, Campbell S E, Drobne K, et al. Microbial endoliths: A benthic overprint in the sedimentary record, and a paleobathymetric cross-reference with foraminifera[J]. Journal of Paleontology, 1984, 58: 351-361.
[45] Garcia-Pichel F. Plausible mechanisms for the boring on carbonates by microbial phototrophs[J]. Sedimentary Geology, 2006, 185(3/4): 205-213.
[46] Gerdes G, Dunajtschik-Piewak K, Riege H, et al. Structural diversity of biogenic carbonate particles in microbial mats. Sedimentology, 1994, 41(6): 1273-1294.
[47] 梅冥相,刘丽,胡媛. 北京西郊寒武系凤山组叠层石生物层[J]. 地质学报,2015,89(2):440-460.

Mei Mingxiang, Liu Li, Hu Yuan. Stromatolitic biostrome of the Cambrian Fengshan Formation at the Xiaweidian section in the western suburb of Beijing, North China[J]. Acta Geologica Sinica, 2015, 89(2): 440-460.
[48] Mobberley J M, Khodadad C L M, Foster J S. Metabolic potential of lithifying cyanobacteria-dominated thrombolitic mats[J]. Photosynthesis Research, 2013, 118(1/2): 125-140.
[49] Pinckney J L, Reid R P. Productivity and community composition of stromatolitic microbial mats in the Exuma Cays, Bahamas[J]. Facies, 1997, 36: 204-207.
[50] 刘闯,钟建华,曹梦春,等. 泥裂影响因素及其研究意义综述[J]. 地球科学与环境学报,2017,39(4):539-550.

Liu Chuang, Zhong Jianhua, Cao Mengchun, et al. Review on influence factors of mud cracks and their significance[J]. Journal of Earth Sciences and Environment, 2017, 39(4): 539-550.
[51] 贾进华. 古海岸带碎屑潮汐环境沉积微相与砂体分布:以塔中地区志留系为例[J]. 中国矿业大学学报,2019,48(1):110-123.

Jia Jinhua. Sedimentary microfacies and sandbody distribution in the clastic tidal environment of the ancient coastal zone: A case study of Silurian in Tazhong area, Tarim Basin[J]. Journal of China University of Mining & Technology, 2019, 48(1): 110-123.
[52] Riding R. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition[J]. Geobiology, 2006, 4(4): 299-316.
[53] 刘丽静,杨海军,潘文庆,等. 中国新疆塔里木盆地上奥陶统良里塔格组的钙藻化石[J]. 微体古生物学报,2012,29(1):18-38.

Liu Lijing, Yang Haijun, Pan Wenqing, et al. Calcareous algae from the Upper Ordovician Lianglitage Formation in the Tarim Basin, Xinjiang, China[J]. Acta Micropalaeontologica Sinica, 2012, 29(1): 18-38.
[54] 王龙,Latif K,Riaz M,等. 微生物碳酸盐岩的成因、分类以及问题与展望:来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展,2018,33(10):1005-1023.

Wang Long, Latif K, Riaz M, et al. The genesis, classification, problems and prospects of microbial carbonates: Implications from the Cambrian carbonate of North China Platform[J]. Advances in Earth Science, 2018, 33(10): 1005-1023.
[55] Sánchez-Román M, McKenzie J A, De Luca Rebello Wagener A, et al. Presence of sulfate does not inhibit low-temperature dolomite precipitation[J]. Earth and Planetary Science Letters, 2009, 285(1/2): 131-139.
[56] Louyakis A S, Mobberley J M, Vitek B E, et al. A study of the microbial spatial heterogeneity of Bahamian thrombolites using molecular, biochemical, and stable isotope analyses[J]. Astrobiology, 2017, 17(5): 413-430.
[57] Louyakis A S, Gourlè H, Casaburi G, et al. A year in the life of a thrombolite: Comparative metatranscriptomics reveals dynamic metabolic changes over diel and seasonal cycles[J]. Environmental Microbiology, 2018, 20(2): 842-861.
[58] 由雪莲,孙枢,朱井泉,等. 微生物白云岩模式研究进展[J]. 地学前缘,2011,18(4):52-64.

You Xuelian, Sun Shu, Zhu Jingquan, et al. Progress in the study of microbial dolomite model[J]. Earth Science Frontiers, 2011, 18(4): 52-64.
[59] 许杨阳,刘邓,于娜,等. 微生物(有机)白云石成因模式研究进展与思考[J]. 地球科学,2018,43(增刊1):63-70.

Xu Yangyang, Liu Deng, Yu Na, et al. Advance and review on microbial/organogenic dolomite model[J]. Earth Science, 2018, 43(Suppl. 1): 63-70.
[60] 肖恩照, 王皓, 覃英伦, 等. 寒武纪芙蓉统均一石沉积组构及环境特征:以河北涞源长山组为例[J]. 沉积学报, 2020, 38(1): 76-90.

Xiao Enzhao, Wang Hao, Qin Yinglun, et al. Sedimentary fabrics and environmental characteristics of leiolite in Cambrian: A case study from the Changshan Formation in Laiyuan city, Hebei provice[J]. Acta Sedimentologica Sinica, 2020, 38(1): 76-90.
[61] 刘梦瑶,齐永安,史云鹤,等. 华北寒武纪—奥陶纪豹皮状碳酸盐岩系生物扰动成因[J]. 沉积学报,2020,38(1):91-103.

Liu Mengyao, Qi Yong’an, Shi Yunhe, et al. Formation mechanism of Cambrian-Ordovician bioturbated dolomites in North China[J]. Acta Sedimentologica Sinica, 2020, 38(1): 91-103.
[62] 董小波,牛永斌. 豫西北奥陶系马家沟组三段豹斑灰岩的生物潜穴成因及成岩演化[J]. 现代地质,2015,29(4):833-843.

Dong Xiaobo, Niu Yongbin. Biological burrow explanation of leopard limestone and its diagenetic evolution in the third member of Majiagou Formation in Ordovician, northwest of Henan province[J]. Geoscience, 2015, 29(4): 883-843.