[1] EM-DAT. EM-DAT Public [DB/OL]. https://public.emdat.be/, 2021-06-21.
[2] Totman Parrish J, Soreghan G S. Sedimentary geology and the future of paleoclimate studies[J]. The Sedimentary Record, 2013, 11(2): 4-10.
[3] 杨江海,颜佳新,黄燕. 从晚古生代冰室到早中生代温室的气候转变:兼论东特提斯低纬区的沉积记录与响应[J]. 沉积学报,2017,35(5):981-993.

Yang Jianghai, Yan Jiaxin, Huang Yan. The Earth’s penultimate icehouse-to-greenhouse climate transition and related sedimentary records in low-latitude regions of eastern Tethys[J]. Acta Sedimentologica Sinica, 2017, 35(5): 981-993.
[4] 孙枢,王成善. “深时”(Deep Time)研究与沉积学[J]. 沉积学报,2009,27(5):792-810.

Sun Shu, Wang Chengshan. Deep time and sedimentology[J]. Acta Sedimentologica Sinica, 2009, 27(5): 792-810.
[5] Scotese C R, Song H J, Mills B J W, et al. Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years[J]. Earth-Science Reviews, 2021, 215: 103503.
[6] 王成善,胡修棉. 白垩纪世界与大洋红层[J]. 地学前缘,2005,12(2):11-21.

Wang Chengshan, Hu Xiumian. Cretaceous world and oceanic red beds[J]. Earth Science Frontiers, 2005, 12(2): 11-21.
[7] 许艺炜,黄燕,胡修棉,等. 显生宙深时气候研究热点问题的文献计量分析[J]. 沉积学报,2017,35(5):994-1003.

Xu Yiwei, Huang Yan, Hu Xiumian, et al. Hot topics in Phanerozoic deep-time climate research: Based on bibliometric analysis[J]. Acta Sedimentologica Sinica, 2017, 35(5): 994-1003.
[8] 王成善. 白垩纪地球表层系统重大地质事件与温室气候变化研究:从重大地质事件探寻地球表层系统耦合[J]. 地球科学进展,2006,21(8):838-842.

Wang Chengshan. Coupling of the earth surface system: Inferring from the Cretaceous major geological events[J]. Advances in Earth Science, 2006, 21(8): 838-842.
[9] 高远,王成善,黄永建,等. 大陆科学钻探开展古气候研究进展[J]. 地学前缘,2017,24(1):229-241.

Gao Yuan, Wang Chengshan, Huang Yongjian, et al. Progress in the study of paleoclimate change in continental scientific drilling projects[J]. Earth Science Frontiers, 2017, 24(1): 229-241.
[10] Tierney J E, Poulsen C J, Montañez I P, et al. Past climates inform our future[J]. Science, 2020, 370(6517): eaay3701.
[11] Retallack G J. Multiple Permian-Triassic life crises on land and at sea[J]. Global and Planetary Change, 2021, 198: 103415.
[12] 谭聪,于炳松,袁选俊,等. 鄂尔多斯盆地下三叠统刘家沟组与和尚沟组红层成色机制[J]. 现代地质,2020,34(4):769-783.

Tan Cong, Yu Bingsong, Yuan Xuanjun, et al. Color origin of the Lower Triassic Liujiagou and Heshanggou Formations red beds in the Ordos Basin[J]. Geoscience, 2020, 34(4): 769-783.
[13] Franke W, Paul J. Pelagic red beds in the Devonian of Germany-deposition and diagenesis[J]. Sedimentary Geology, 1980, 25(3): 231-256.
[14] Ziegler A M, McKerrow W S. Silurian marine red beds[J]. American Journal of Science, 1975, 275(1): 31-56.
[15] Sheldon N D. Do red beds indicate paleoclimatic conditions?: A Permian case study[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 228(3/4): 305-319.
[16] Jiang Z X, Liu Q S, Dekkers M J, et al. Remagnetization mechanisms in Triassic red beds from South China[J]. Earth and Planetary Science Letters, 2017, 479: 219-230.
[17] 曹硕. 中国东部晚白垩世风成沉积:盆山型沙漠体系[D]. 北京:中国地质大学(北京),2020.

Cao Shuo. Late Cretaceous aeolian deposits in eastern China: The intermountain erg system[D]. Beijing: China University of Geosciences (Beijing), 2020.
[18] Zhu Z C, Kuang H W, Liu Y Q, et al. Intensifying Aeolian activity following the end‐Permian mass extinction: Evidence from the Late Permian‐Early Triassic terrestrial sedimentary record of the Ordos Basin, North China[J]. Sedimentology, 2020, 67(5): 2691-2720.
[19] Mountney N P, Russell A J. Sedimentology of cold-climate aeolian sandsheet deposits in the Askja region of Northeast Iceland[J]. Sedimentary Geology, 2004, 166(3/4): 223-244.
[20] 陈政宇,柳永清,江小均,等. 柴达木旺尕秀煤矿东南晚侏罗世—早白垩世风成砂古风向及古地理意义[J]. 地学前缘,2020,27(4):82-97.

Chen Zhengyu, Liu Yongqing, Jiang Xiaojun, et al. Paleo-wind direction and paleogeographic significance of Late Jurassic to Early Cretaceous anemoarenyte in the southeastern Wanggaxiu coal mine, Qaidam Basin[J]. Earth Science Frontiers, 2020, 27(4): 82-97.
[21] García Gil S. The sedimentological significance of a clastic wedge in the western basin margin of the Triassic Tethys (Iberian Range, Spain)[J]. Cuadernos de geología ibérica, 1991, (15): 209-239.
[22] Boucot A J,陈旭, Scotese C R,等. 显生宙全球古气候重建[M]. 北京:科学出版社,2009.

Boucot A J, Chen Xu, Scotese C R, et al. Reconstruction of Phanerozoic global paleoclimate[M]. Beijing: Science Press, 2009.
[23] 周春光,杨起,潘治贵,等. 从煤岩成分看延安期古气候变迁[J]. 中国煤田地质,1996,8(4):12-14,19.

Zhou Chunguang, Yang Qi, Pan Zhigui, et al. Paleo-climate evolution of Yan’an stage inferred from petrographic composition of coal[J]. Coal Geology of China, 1996, 8(4): 12-14, 19.
[24] 邵龙义,徐小涛,王帅,等. 中国含煤岩系古地理及古环境演化研究进展[J]. 古地理学报,2021,23(1):19-38.

Shao Longyi, Xu Xiaotao, Wang Shuai, et al. Research progress of palaeogeography and palaeoenvironmental evolution of coal-bearing series in China[J]. Journal of Palaeogeography, 2021, 23(1): 19-38.
[25] Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles[J]. The Journal of Geology, 1989, 97(2): 129-147.
[26] Reiche P. Graphic representation of chemical weathering[J]. Journal of Sedimentary Research, 1943, 13(2): 58-68.
[27] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534.
[28] Buggle B, Glaser B, Hambach U, et al. An evaluation of geochemical weathering indices in Loess⁃Paleosol studies[J]. Quaternary International, 2011, 240(1/2): 12-21.
[29] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
[30] McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295-303.
[31] 赵占仑,温小浩,汤连生,等. 化学蚀变指数指示古气候变化的适用性探讨[J]. 沉积学报,2018,36(2):343-353.

Zhao Zhanlun, Wen Xiaohao, Tang Liansheng, et al. Applicability of chemical alteration index to indication of paleoclimate change by different sedimentary facies[J]. Acta Sedimentologica Sinica, 2018, 36(2): 343-353.
[32] Wang P, Du Y S, Yu W C, et al. The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history[J]. Earth-Science Reviews, 2020, 201: 103032.
[33] Li C, Yang S Y. Is chemical index of alteration (CIA) a reliable proxy for chemical weathering in global drainage basins?[J]. American Journal of Science, 2010, 310(2): 111-127.
[34] Yang J H, Cawood P A, Du Y S, et al. Global continental weathering trends across the Early Permian glacial to postglacial transition: Correlating high- and low-paleolatitude sedimentary records[J]. Geology, 2014, 42(10): 835-838.
[35] 曹莹. 化学风化指标对华北二叠纪—三叠纪陆地风化及气候变化的指示意义[D]. 武汉:中国地质大学,2018.

Cao Ying. Permian-Triassic continental weathering and climates reconstructed in North China from chemical weathering indices[D]. Wuhan: China University of Geosciences, 2018.
[36] von Eynatten H, Tolosana-Delgado R, Karius V. Sediment generation in modern glacial settings: Grain-size and source-rock control on sediment composition[J]. Sedimentary Geology, 2012, 280: 80-92.
[37] Borges J B, Huh Y, Moon S, et al. Provenance and weathering control on river bed sediments of the eastern Tibetan Plateau and the Russian Far East[J]. Chemical Geology, 2008, 254(1/2): 52-72.
[38] von Eynatten H, Barceló-Vidal C, Pawlowsky-Glahn V. Modelling compositional change: The example of chemical weathering of granitoid rocks[J]. Mathematical Geology, 2003, 35(3): 231-251.
[39] Price J R, Velbel M A. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks[J]. Chemical Geology, 2003, 202(3/4): 397-416.
[40] Parker A. An index of weathering for silicate rocks[J]. Geological Magazine, 1970, 107(6): 501-504.
[41] Harnois L. The CIW index: A new chemical index of weathering[J]. Sedimentary Geology, 1988, 55(3/4): 319-322.
[42] Fedo C M, Wayne Nesbitt H, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924.
[43] Panahi A, Young G M, Rainbird R H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2199-2220.
[44] Rasmussen C, Brantley S, Richter D D, et al. Strong climate and tectonic control on plagioclase weathering in granitic terrain[J]. Earth and Planetary Science Letters, 2011, 301(3/4): 521-530.
[45] 杨江海,马严. 源—汇沉积过程的深时古气候意义[J]. 地球科学,2017,42(11):1910-1921.

Yang Jianghai, Ma Yan. Paleoclimate perspectives of source-to-sink sedimentary processes[J]. Earth Science, 2017, 42(11): 1910-1921.
[46] Yang J H, Cawood P A, Du Y S, et al. Reconstructing Early Permian tropical climates from chemical weathering indices[J]. GSA Bulletin, 2016, 128(5/6): 739-751.
[47] Qi L, Cawood P A, Yang J H, et al. Quantifying temperature variation between Neoproterozoic cryochron⁃nonglacial interlude, Nanhua Basin, South China[J]. Precambrian Research, 2020, 351: 105967.
[48] 刘英俊,曹励明,李兆麟,等. 元素地球化学[M]. 北京:科学出版社,1984.

Liu Yingjun, Cao Liming, Li Zhaolin, et al. Geochemistry of element[M]. Beijing: Science Press, 1984.
[49] 徐莉,张成君,贾松海,等. 河南济源大峪槐圪塔岭二叠—三叠系元素地球化学特征及古环境[J]. 地质学报,2015,89(1):137-148.

Xu Li, Zhang Chengjun, Jia Songhai, et al. Element geochemistry and palaeoenvironment of Permian-Triassic stratum in the Huaigeda hill of Dayu town Jiyuan Basin, Henan province[J]. Acta Geologica Sinica, 2015, 89(1): 137-148.
[50] 吴欣松,郭娟娟,黄永建,等. 松辽盆地晚白垩世古气候变化的测井替代指标[J]. 古地理学报,2011,13(1):103-110.

Wu Xinsong, Guo Juanjuan, Huang Yongjian, et al. Well logging proxy of the Late Cretaceous palaeoclimate change in Songliao Basin[J]. Journal of Palaeogeography, 2011, 13(1): 103-110.
[51] 贾建亮. 基于地球化学—地球物理的松辽盆地上白垩统油页岩识别与资源评价[D]. 长春:吉林大学,2012.

Jia Jianliang. Research on the recognition and resource evaluation of the Upper Cretaceous oil shale based on geochemistry-geophysics technique in the Songliao Basin (NE, China)[D]. Changchun: Jilin University, 2012.
[52] Ngueutchoua G, Ekoa Bessa A Z, Eyong J T, et al. Geochemistry of Cretaceous fine-grained siliciclastic rocks from upper Mundeck and Logbadjeck Formations, Douala sub-basin, SW Cameroon: Implications for weathering intensity, provenance, paleoclimate, redox condition, and tectonic setting[J]. Journal of African Earth Sciences, 2019, 152: 215-236.
[53] Li S L, Li W Q, Beard B L, et al. K isotopes as a tracer for continental weathering and geological K cycling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(18): 8740-8745.
[54] 王昆,李伟强,李石磊. 钾稳定同位素研究综述[J]. 地学前缘,2020,27(3):104-122.

Wang Kun, Li Weiqiang, Li Shilei. Stable potassium isotope geochemistry and cosmochemistry[J]. Earth Science Frontiers, 2020, 27(3): 104-122.
[55] 苟龙飞,金章东,贺茂勇. 锂同位素示踪大陆风化:进展与挑战[J]. 地球环境学报,2017,8(2):89-102.

Gou Longfei, Jin Zhangdong, He Maoyong. Using lithium isotopes traces continental weathering: Progresses and challenges[J]. Journal of Earth Environment, 2017, 8(2): 89-102.
[56] 柯珊,刘盛遨,李王晔,等. 镁同位素地球化学研究新进展及其应用[J]. 岩石学报,2011,27(2):383-397.

Ke Shan, Liu Sheng’ao, Li Wangye, et al. Advances and application in magnesium isotope geochemistry[J]. Acta Petrologica Sinica, 2011, 27(2): 383-397.
[57] 刘芮岑. 湖南茶陵盆地晚白垩世—古新世古气候分析[D]. 南京:南京大学,2018.

Liu Ruicen. Paleoclimate of the Late Cretaceous-Paleocene in the Chaling Basin, Hunan, South China[D]. Nanjing: Nanjing University, 2018.
[58] 王尹,李祥辉,周勇,等. 南雄盆地晚白垩世—古新世陆源沉积组份变化的古气候指示[J]. 沉积学报,2015,33(1):116-123.

Wang Yin, Li Xianghui, Zhou Yong, et al. Paleoclimate indication of terrigenous clastic rock’s component during the Late Cretaceous-Early Paleocene in the Nanxiong Basin[J]. Acta Sedimentologica Sinica, 2015, 33(1): 116-123.
[59] 杨作升,赵晓辉,乔淑卿,等. 长江和黄河入海沉积物不同粒级中长石/石英比值及化学风化程度评价[J]. 中国海洋大学学报,2008,38(2):244-250.

Yang Zuosheng, Zhao Xiaohui, Qiao Shuqing, et al. Feldspar/quartz (F/Q) ratios as a chemical weathering intensity indicator in different grain size-fractions of sediments from the Changjiang and Huanghe rivers to the seas[J]. Periodical of Ocean University of China, 2008, 38(2): 244-250.
[60] Kuhn G, Diekmann B. Late Quaternary variability of ocean circulation in the southeastern South Atlantic inferred from the terrigenous sediment record of a drift deposit in the southern Cape Basin (ODP Site 1089)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 182(3/4): 287-303.
[61] 汤艳杰,贾建业,谢先德. 黏土矿物的环境意义[J]. 地学前缘,2002,9(2):337-344.

Tang Yanjie, Jia Jianye, Xie Xiande. Environment significance of clay minerals[J]. Earth Science Frontiers, 2002, 9(2): 337-344.
[62] de Segonzac G D. The transformation of clay minerals during diagenesis and low grade metamorphism: A review[J]. Sedimentology, 1970, 15(3/4): 281-346.
[63] Sheldon N D, Tabor N J. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols[J]. Earth-Science Reviews, 2009, 95(1/2): 1-52.
[64] Robert C. Late Quaternary variability of precipitation in southern California and climatic implications: Clay mineral evidence from the Santa Barbara Basin, ODP Site 893[J]. Quaternary Science Reviews, 2004, 23(9/10): 1029-1040.
[65] Jiménez-Espinosa R, Jiménez-Millán J. Calcrete development in mediterranean colluvial carbonate systems from SE Spain[J]. Journal of Arid Environments, 2003, 53(4): 479-489.
[66] 陈涛,王欢,张祖青,等. 黏土矿物对古气候指示作用浅析[J]. 岩石矿物学杂志,2003,22(4):416-420.

Chen Tao, Wang Huan, Zhang Zuqing, et al. Clay minerals as indicators of paleoclimate[J]. Acta Petrologica et Mineralogica, 2003, 22(4): 416-420.
[67] 孙庆峰, Colin C,陈发虎,等. 气候环境变化研究中影响粘土矿物形成及其丰度因素的讨论[J]. 岩石矿物学杂志,2011,30(2):291-300.

Sun Qingfeng, Colin C, Chen Fahu, et al. A discussion on the factors affecting formation and quantity of clay minerals in climatic and environmental researches[J]. Acta Petrologica et Mineralogica, 2011, 30(2): 291-300.
[68] Bain D C. The weathering of chloritic minerals in some Scottish soils[J]. European Journal of Soil Science, 1977, 28(1): 144-164.
[69] Gao Y, Gao Y F, Ibarra D E, et al. Clay mineralogical evidence for mid-latitude terrestrial climate change from the Latest Cretaceous through the earliest Paleogene in the Songliao Basin, NE China[J]. Cretaceous Research, 2021, 124: 104827.
[70] Chamley H. Clay sedimentology[M]. Berlin: Spring-Verlag, 1989.
[71] Whitehouse U G, Jeffrey L M, Debbrecht J D. Differential settling tendencies of clay minerals in saline waters[J]. Clays and Clay Minerals, 1958, 7(1): 1-79.
[72] 吕镔,刘秀铭,郭晖,等. 福建白垩系沙县组地层磁学特征及其环境意义[J]. 沉积学报,2019,37(3):519-531.

Bin Lü, Liu Xiuming, Guo Hui, et al. Magnetic properties of the Cretaceous Shaxian Formation stratum in Fujian province and their environmental significance[J]. Acta Sedimentologica Sinica, 2019, 37(3): 519-531.
[73] Jiang Z X, Liu Q S, Roberts A P, et al. A new model for transformation of ferrihydrite to hematite in soils and sediments[J]. Geology, 2018, 46(11): 987-990.
[74] 章余银. 太行山南部前寒武纪红层岩石磁学特征及其沉积环境初步探析[D]. 福州:福建师范大学,2017.

Zhang Yuyin. Magnetic characteristics of Precambrian red beds in Taihang mountains and its initial paleoenvironmental significance[D]. Fuzhou: Fujian Normal University, 2017.
[75] 王峰,刘玄春,邓秀芹,等. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J]. 沉积学报,2017,35(6):1265-1273.

Wang Feng, Liu Xuanchun, Deng Xiuqin, et al. Geochemical characteristics and environmental implications of trace elements of Zhifang Formation in Ordos Basin[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1265-1273.
[76] 王随继,黄杏珍,妥进才,等. 泌阳凹陷核桃园组微量元素演化特征及其古气候意义[J]. 沉积学报,1997,15(1):66-71.

Wang Suiji, Huang Xingzhen, Jincai Tuo, et al. Evolutional characteristics and their Paleoclimate significance of trace elements in the Hetaoyuan Formation, Biyang Depression[J]. Acta Sedimentologica Sinica, 1997, 15(1): 66-71.
[77] 尹锦涛,俞雨溪,姜呈馥,等. 鄂尔多斯盆地张家滩页岩元素地球化学特征及与有机质富集的关系[J]. 煤炭学报,2017,42(6):1544-1556.

Yin Jintao, Yu Yuxi, Jiang Chengfu, et al. Relationship between element geochemical characteristic and organic matter enrichment in Zhangjiatan shale of Yanchang Formation, Ordos Basin[J]. Journal of China Coal Society, 2017, 42(6): 1544-1556.
[78] 范萌萌,卜军,赵筱艳,等. 鄂尔多斯盆地东南部延长组微量元素地球化学特征及环境指示意义[J]. 西北大学学报(自然科学版),2019,49(4):633-642.

Fan Mengmeng, Bu Jun, Zhao Xiaoyan, et al. Geochemical characteristics and environmental implications of trace elements of Yanchang Formation in southeastern Ordos Basin[J]. Journal of Northwest University (Natural Science Edition), 2019, 49(4): 633-642.
[79] 徐立恒,陈践发,李玲,等. 普光气藏长兴—飞仙关组碳酸盐岩C、O同位素、微量元素分析及古环境意义[J]. 地球学报,2009,30(1):103-110.

Xu Liheng, Chen Jianfa, Li Ling, et al. Carbon, Oxygen isotope and trace element characteristics of carbonate rocks in Changxin-Feixianguan Formation of Puguang gas pool and its palaeoenvironment significance[J]. Acta Geoscientica Sinica, 2009, 30(1): 103-110.
[80] 朱丽霞,付修根,谭富文,等. 羌塘盆地那底岗日地区上侏罗统—下白垩统碳酸盐岩稀土元素地球化学与古气候[J]. 沉积与特提斯地质,2010,30(4):92-96.

Zhu Lixia, Fu Xiugen, Tan Fuwen, et al. REE geochemistry of the Upper Jurassic- Lower Cretaceous carbonate rocks and palaeoclimates in the Nadigangri region, Qiangtang Basin[J]. Sedimentary Geology and Tethyan Geology, 2010, 30(4): 92-96.
[81] 沈立建,刘成林,王立成. 云南兰坪盆地云龙组上段稀土、微量元素地球化学特征及其环境意义[J]. 地质学报,2015,89(11):2036-2045.

Shen Lijian, Liu Chenglin, Wang Licheng. Geochemical characteristics of rare earths and trace elements, of the upper Yunlong Formation in Lanping Basin, Yunnan and its environments significance[J]. Acta Geologica Sinica, 2015, 89(11): 2036-2045.
[82] Wang C S, Scott R W, Wan X Q, et al. Late Cretaceous climate changes recorded in eastern Asian lacustrine deposits and North American Epieric sea strata[J]. Earth-Science Reviews, 2013, 126: 275-299.
[83] Zhang Z H, Wang T T, Ramezani J, et al. Climate forcing of terrestrial carbon sink during the Middle Jurassic greenhouse climate: Chronostratigraphic analysis of the Yan’an Formation, Ordos Basin, North China[J]. GSA Bulletin, 2021, 133(7/8): 1723-1733.
[84] Yang H F, Huang Y J, Ma C, et al. Recognition of Milankovitch cycles in XRF core-scanning records of the Late Cretaceous Nenjiang Formation from the Songliao Basin (northeastern China) and their paleoclimate implications[J]. Journal of Asian Earth Sciences, 2020, 194: 104183.
[85] Peng C, Zou C C, Zhang S X, et al. Astronomically forced variations in multiresolution resistivity logs of lower Upper Cretaceous (Cenomanian-Coniacian) terrestrial formations from the Songliao Basin, northeastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 555: 109858.
[86] Huang H, Gao Y, Ma C, et al. Organic carbon burial is paced by a ~173-ka obliquity cycle in the middle to high latitudes[J]. Science Advances, 2021, 7(28): eabf9489.
[87] 李军,黄成敏,刘艳梅. 深时古土壤:远古地球环境演变的“记录仪”[J]. 自然杂志,2021,43(2):141-148.

Li Jun, Huang Chengmin, Liu Yanmei. Deep-time paleosols: Recorders of the ancient Earth environmental evolution[J]. Chinese Journal of Nature, 2021, 43(2): 141-148.
[88] Tabor N J, Myers T S. Paleosols as indicators of Paleoenvironment and paleoclimate[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 333-361.
[89] Mack G H, James W C, Monger H C. Classification of paleosols[J]. GSA Bulletin, 1993, 105(2): 129-136.
[90] Myers T S, Tabor N J, Jacobs L L, et al. Palaeoclimate of the Late Jurassic of Portugal: Comparison with the western United States[J]. Sedimentology, 2012, 59(6): 1695-1717.
[91] 李双建,张然,王清晨. 沉积物颜色和粘土矿物对库车坳陷第三纪气候变化的指示[J]. 沉积学报,2006,24(4):521-530.

Li Shuangjian, Zhang Ran, Wang Qingchen. Implications of the color of sediments and clay minerals for Tertiary climatic changes of Kuqa Depression[J]. Acta Sedimentologica Sinica, 2006, 24(4): 521-530.
[92] Clayton R N, Mayeda T K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J]. Geochimica et Cosmochimica Acta, 1963, 27(1): 43-52.
[93] Tabor N J, Montañez I P. Oxygen and hydrogen isotope compositions of Permian pedogenic phyllosilicates: Development of modern surface domain arrays and implications for paleotemperature reconstructions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 223(1/2): 127-146.
[94] Myers T S, Tabor N J, Jacobs L L. Late Jurassic paleoclimate of Central Africa[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 311(1/2): 111-125.
[95] Delgado A, Reyes E. Oxygen and hydrogen isotope compositions in clay minerals: A potential single-mineral geothermometer[J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4285-4289.
[96] Jenny H, Leonard C D. Functional relationships between soil properties and rainfall[J]. Soil Science, 1934, 38(5): 363-382.
[97] Sheldon N D, Retallack G J, Tanaka S. Geochemical climofunctions from North American soils and application to paleosols across the Eocene‐Oligocene boundary in Oregon[J]. The Journal of Geology, 2002, 110(6): 687-696.
[98] Retallack G J. Untangling the effects of burial alteration and ancient soil formation[J]. Annual Review of Earth and Planetary Sciences, 1991, 19: 183-206.
[99] 李军,黄成敏,文星跃,等. 四川盆地中生代古气候变化:来自深时古土壤证据[J]. 沉积学报,2021,39(5):1157-1170.

Li Jun, Huang Chengmin, Wen Xingyue, et al. Mesozoic paleoclimate reconstruction in Sichuan Basin, China: Evidence from deep-time paleosols[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1157-1170.
[100] Sayyed M R G, Hundekari S M. Preliminary comparison of ancient bole beds and modern soils developed upon the Deccan volcanic basalts around Pune (India): Potential for palaeo- environmental reconstruction[J]. Quaternary International, 2006, 156-157: 189-199.
[101] Sheldon N D. Abrupt chemical weathering increase across the Permian⁃Triassic boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 231(3/4): 315-321.
[102] Maher B A, Thompson R, Zhou L P. Spatial and temporal reconstructions of changes in the Asian palaeomonsoon: A new mineral magnetic approach[J]. Earth and Planetary Science Letters, 1994, 125(1/2/3/4): 461-471.
[103] Buggle B, Hambach U, Glaser B, et al. Stratigraphy, and spatial and temporal paleoclimatic trends in southeastern/eastern European loess⁃paleosol sequences[J]. Quaternary International, 2009, 196(1/2): 86-106.
[104] 王宇佳. 江西广丰晚白垩世周田组沉积特征与古气候分析[D]. 南昌:东华理工大学,2019.

Wang Yujia. Sedimentary characteristics and paleoclimate of the Zhoutian Formation in the Guangfeng Basin of Jiangxi province[D]. Nanchang: East China University of Technology, 2019.
[105] Stiles C A, Mora C I, Driese S G. Pedogenic iron-manganese nodules in Vertisols: A new proxy for paleoprecipitation?[J]. Geology, 2001, 29(10): 943-946.
[106] Gao Y, Ibarra D E, Caves Rugenstein J K, et al. Terrestrial climate in mid-latitude East Asia from the Latest Cretaceous to the earliest Paleogene: A multiproxy record from the Songliao Basin in northeastern China[J]. Earth-Science Reviews, 2021, 216: 103572.
[107] Gile L H, Peterson F F, Grossman R B. Morphological and genetic sequences of carbonate accumulation in desert soils[J]. Soil Science, 1966, 101(5): 347-360.
[108] Kelson J R, Huntington K W, Breecker D O, et al. A proxy for all seasons? A synthesis of clumped isotope data from Holocene soil carbonates[J]. Quaternary Science Reviews, 2020, 234: 106259.
[109] Fischer-Femal B J, Bowen G J. Coupled carbon and oxygen isotope model for pedogenic carbonates[J]. Geochimica et Cosmochimica Acta, 2021, 294: 126-144.
[110] Yapp C J. Rusty relics of earth history: Iron (III) oxides, isotopes, and surficial environments[J]. Annual Review of Earth and Planetary Sciences, 2001, 29: 165-199.
[111] Yapp C J. Mixing of CO2 in surficial environments as recorded by the concentration and δ13C values of the Fe(CO3)OH component in goethite[J]. Geochimica et Cosmochimica Acta, 2001, 65(22): 4115-4130.
[112] Cerling T E. Carbon dioxide in the atmosphere: Evidence from Cenozoic and Mesozoic paleosols[J]. American Journal of Science, 1991, 291(4): 377-400.
[113] Ekart D D, Cerling T E, Montanez I P, et al. A 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatomospheric carbon dioxide[J]. American Journal of Science, 1999, 299(10): 805-827.
[114] Cerling T E. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters, 1984, 71(2): 229-240.
[115] Pavlov A A, Mills M J, Toon O B. Mystery of the volcanic mass-independent sulfur isotope fractionation signature in the Antarctic ice core[J]. Geophysical Research Letters, 2005, 32(12): L12816.
[116] Arens N C, Jahren A H, Amundson R. Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide?[J]. Paleobiology, 2000, 26(1): 137-164.
[117] Romanek C S, Grossman E L, Morse J W. Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate[J]. Geochimica et Cosmochimica Acta, 1992, 56(1): 419-430.
[118] Nordt L, Atchley S, Dworkin S. Terrestrial evidence for two greenhouse events in the Latest Cretaceous[J]. GSA Today, 2003, 13(12): 4-9.
[119] Cojan L, Moreau M G, Stott L E. Stable carbon isotope stratigraphy of the Paleogene pedogenic series of southern France as a basis for continental-marine correlation[J]. Geology, 2000, 28(3): 259-262.
[120] Beerling D J, Lomax B H, Royer D L, et al. An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 7836-7840.
[121] Dworkin S I, Nordt L, Atchley S. Determining terrestrial paleotemperatures using the oxygen isotopic composition of pedogenic carbonate[J]. Earth and Planetary Science Letters, 2005, 237(1/2): 56-68.
[122] Chamberlain C P, Mix H T, Mulch A, et al. The Cenozoic climatic and topographic evolution of the western North American Cordillera[J]. American Journal of Science, 2012, 312(2): 213-262.
[123] Gao Y, Ibarra D E, Wang C S, et al. Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous[J]. Geology, 2015, 43(4): 287-290.
[124] Ghosh P, Adkins J, Affek H, et al. 13C⁃18O bonds in carbonate minerals: A new kind of paleothermometer[J]. Geochimica et Cosmochimica Acta, 2006, 70(6): 1439-1456.
[125] 李平平,马倩倩,邹华耀,等. 团簇同位素的基本原理与地质应用[J]. 古地理学报,2017,19(4):713-728.

Li Pingping, Ma Qianqian, Zou Huayao, et al. Basic principle of clumped isotopes and geological applications[J]. Journal of Palaeogeography, 2017, 19(4): 713-728.
[126] Ghosh P, Garzione C N, Eiler J M. Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates[J]. Science, 2006, 311(27): 511-515.
[127] 季顺川. 利用天水盆地碳酸钙同位素重建中新世中晚期大气CO2浓度变化[D]. 兰州:兰州大学,2017.

Ji Shunchuan. Reconstructing Mid-Late Miocene atmospheric CO2 concentration using carbonate isotopes from the Tianshui Basin, northern China[D]. Lanzhou: Lanzhou University, 2017.
[128] Zhang L M, Wang C S, Wignall P B, et al. Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China[J]. Geology, 2018, 46(3): 271-274.
[129] Bojanowski M J, Goryl M, Kremer B, et al. Pedogenic siderites fossilizing Ediacaran soil microorganisms on the Baltica paleocontinent[J]. Geology, 2020, 48(1): 62-66.
[130] Ufnar D F, Ludvigson G A, González L A, et al. High latitude meteoric δ 18O compositions: Paleosol siderite in the Middle Cretaceous Nanushuk Formation, North Slope, Alaska[J]. GSA Bulletin, 2004, 116(3/4): 463-473.