[1] 黄金亮,邹才能,李建忠,等. 川南下寒武统筇竹寺组页岩气形成条件及资源潜力[J]. 石油勘探与开发,2012,39(1):69-75.

Huang Jinliang,Zou Caineng,Li Jianzhong,et al. Shale gas generation and potential of the Lower Cambrian Qiongzhusi Formation in southern Sichuan Basin,China[J]. Petroleum Exploration and Development,2012,39(1): 69-75.
[2] 王鹏威,刘忠宝,金之钧,等. 川西南地区下寒武统筇竹寺组页岩气纵向差异富集主控因素[J]. 地球科学,2019,44(11):3628-3638.

Wang Pengwei,Liu Zhongbao,Jin Zhijun,et al. Main control factors of shale gas differential vertical enrichment in Lower Cambrian Qiongzhusi Formation,southwest Sichuan Basin,China[J]. Earth Science,2019,44(11): 3628-3638.
[3] 金之钧,胡宗全,高波,等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘,2016,23(1):1-10.

Jin Zhijun,Hu Zongquan,Gao Bo,et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations,southeastern Sichuan Basin[J]. Earth Science Frontiers,2016,23(1): 1-10.
[4] 刘忠宝,高波,张钰莹,等. 上扬子地区下寒武统页岩沉积相类型及分布特征[J]. 石油勘探与开发,2017,44(1):21-31.

Liu Zhongbao,Gao Bo,Zhang Yuying,et al. Types and distribution of the shale sedimentary facies of the Lower Cambrian in Upper Yangtze area,South China[J]. Petroleum Exploration and Development,2017,44(1): 21-31.
[5] 刘犟,张克银. 井研—犍为地区麦地坪组—筇竹寺组沉积相特征[J]. 科学技术与工程,2018,18(2):20-25.

Liu Jiang,Zhang Keyin. Sedimentary facies characteristics of Maidiping-Qiongzhusi Formation in Jingyan-Qianwei area[J]. Science Technology and Engineering,2018,18(2): 20-25.
[6] 刘犟,张克银. 四川盆地井研地区麦地坪组—筇竹寺组高分辨率层序地层特征[J]. 成都理工大学学报,2018,45(5):585-593.

Liu Jiang,Zhang Keyin. Characteristics of high-resolution stratigraphic sequence of Maidiping Formation and Qiongzhusi Formation in Jingyan area,Sichuan,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2018,45(5): 585-593.
[7] 李延钧,赵圣贤,黄勇斌,等. 四川盆地南部下寒武统筇竹寺组页岩沉积微相研究[J]. 地质学报,2013,87(8):1136-1148.

Li Yanjun,Zhao Shengxian,Huang Yongbin,et al. The sedimentary micro-facies study of the Lower Cambrian Qiongzhusi Formation in southern Sichuan Basin[J]. Acta Geologica Sinica,2013,87(8): 1136-1148.
[8] 范海经,邓虎成,伏美燕,等. 四川盆地下寒武统筇竹寺组沉积特征及其对构造的响应[J]. 沉积学报,2021,39(4):1004-1019.

Fan Haijing,Deng Hucheng,Fu Meiyan,et al. Sedimentary characteristics of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and its response to construction[J]. Acta Sedimentologica Sinica,2021,39(4): 1004-1019.
[9] 刘忠宝,杜伟,高波,等. 层序格架中富有机质页岩发育模式及差异分布:以上扬子下寒武统为例[J]. 吉林大学学报(地球科学版),2018,48(1):1-14.

Liu Zhongbao,Du Wei,Gao Bo,et al. Sedimentary model and distribution of organic-rich shale in the sequence stratigraphic framework: A case study of Lower Cambrian in Upper Yangtze region[J]. Journal of Jilin University (Earth Science Edition),2018,48(1): 1-14.
[10] 张俊明,王海峰,李国祥. 华北与扬子地台晚寒武世末期至早奥陶世早期层序地层对比及海平面升降事件[J]. 地层学杂志,2000,24(增刊1):359-369.

Zhang Junming,Wang Haifeng,Li Guoxiang. Sequence stratigraphic correlation and eustatic events from latest Cambrian to early Early Ordovician between North China and Yangtze platforms[J]. Journal of Stratigraphy,2000,24(Suppl.1): 359-369.
[11] 梅冥相,马永生,邓军,等. 上扬子区下古生界层序地层格架的初步研究[J]. 现代地质,2005,19(4):551-562.

Mei Mingxiang,Ma Yongsheng,Deng Jun,et al. Sequence-stratigraphic framework for the Early Palaeozoic of the Upper-Yangtze region[J]. Geoscience,2005,19(4): 551-562.
[12] Vail P R. The stratigraphic signatures of tectonics,eustacy and sedimentology: An overview[M]//Eisele G,Rieken W,Seilacher A. Cycles and events in stratigraphy. Berlin: Springer,1991: 617-659.
[13] Boulila S,Haq B U,Hara N,et al. Potential encoding of coupling between Milankovitch forcing and Earth's interior processes in the Phanerozoic eustatic sea-level record[J]. Earth-Science Reviews,2021,220: 103727.
[14] 龚一鸣,杜远生,童金南,等. 旋回地层学:地层学解读时间的第三里程碑[J]. 地球科学:中国地质大学学报,2008,33(4):443-457.

Gong Yiming,Du Yuansheng,Tong Jinnan,et al. Cyclostratigraphy: The third milestone of stratigraphy in understanding time[J]. Earth Science: Journal of China University of Geosciences,2008,33(4): 443-457.
[15] 梅冥相. 从旋回的有序叠加形式到层序的识别和划分:层序地层学进展之三[J]. 古地理学报,2011,13(1):37-54.

Mei Mingxiang. From vertical stacking pattern of cycles to discerning and division of sequences: The third advance in sequence stratigraphy[J]. Journal of Palaeogeography,2011,13(1): 37-54.
[16] Lourens L J,Sluijs A,Kroon D,et al. Astronomical pacing of Late Palaeocene to Early Eocene global warming events[J]. Nature,2005,435(7045): 1083-1087.
[17] 吴怀春,张世红,冯庆来,等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学:中国地质大学学报,2011,36(3):409-428.

Wu Huaichun,Zhang Shihong,Feng Qinglai,et al. Theoretical basis,research advancement and prospects of cyclostratigraphy[J]. Earth Science: Journal of China University of Geosciences,2011,36(3): 409-428.
[18] Ruhl M,Hesselbo S P,Hinnov L,et al. Astronomical constraints on the duration of the Early Jurassic Pliensbachian Stage and global climatic fluctuations[J]. Earth and Planetary Science Letters,2016,455: 149-165.]
[19] Huang C J,Hesselbo S P. Pacing of the Toarcian Oceanic Anoxic Event (Early Jurassic) from astronomical correlation of marine sections[J]. Gondwana Research,2014,25(4): 1348-1356.
[20] 张若琳,金思丁. 渤海湾盆地沾化凹陷罗69井沙三下亚段旋回地层学研究[J]. 中南大学学报(自然科学版),2021,52(5):1516-1531.

Zhang Ruolin,Jin Siding. Cyclostratigraphy research on lower member 3 of Shahejie Formation in well Luo 69 in Zhanhua Sag Bohai Bay Basin[J]. Journal of Central South University (Science and Technology),2021,52(5): 1516-1531.
[21] Guo D,Jin Z J. Astronomical time scale of a Middle Eocene lacustrine sequence from the Dongpu Sag,Bohai Bay Basin,eastern China[J]. Journal of Asian Earth Sciences,2021,214: 104747.
[22] Jin S D,Deng H C,Zhu X,et al. Orbital control on cyclical organic matter accumulation in Early Silurian Longmaxi Formation shales[J]. Geoscience Frontiers,2020,11(2): 533-545.
[23] 石巨业,金之钧,刘全有,等. 基于米兰科维奇理论的湖相细粒沉积岩高频层序定量划分[J]. 石油与天然气地质,2019,40(6):1205-1214.

Shi Juye,Jin Zhijun,Liu Quanyou,et al. Quantitative classification of high-frequency sequences in fine-grained lacustrine sedimentary rocks based on Milankovitch theory[J]. Oil & Gas Geology,2019,40(6): 1205-1214.
[24] 陈中强,杨建国. 米兰柯维奇旋回在我国前第四纪地层之保存[J]. 微体古生物学报,1996,13(1):65-73.

Chen Zhongqiang,Yang Jianguo. Records of Milankovitch Cycles in pre-Quaternary deposits[J]. Acta Micropalaeontologica Sinica,1996,13(1): 65-73.
[25] 邵龙义,汪浩,Large D J. 中国西南地区晚二叠世泥炭地净初级生产力及其控制因素[J]. 古地理学报,2011,13(5):473-480.

Shao Longyi,Wang Hao,Large D J. Net primary productivity and its control of the Late Permian peatlands in southwestern China[J]. Journal of Palaeogeography,2011,13(5): 473-480.
[26] Wu H C,Zhang S H,Jiang G Q,et al. Astrochronology of the early Turonian-early Campanian terrestrial succession in the Songliao Basin,northeastern China and its implication for long-period behavior of the Solar System[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2013,385: 55-70.
[27] Ochoa D,Sierro F J,Hilgen F J,et al. Origin and implications of orbital-induced sedimentary cyclicity in Pliocene well-logs of the western Mediterranean[J]. Marine Geology,2018,403: 150-164.
[28] Liu Z H,Huang C J,Algeo T J,et al. High-resolution astrochronological record for the Paleocene-Oligocene (66-23 Ma) from the rapidly subsiding Bohai Bay Basin,northeastern China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2018,510: 78-92.
[29] 彭诚. 松辽盆地科探井古环境古气候测井分析方法及其关键问题研究[D]. 北京:中国地质大学(北京),2019.
[30] Ma C,Meyers S R,Sageman B B,et al. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence[J]. Nature,2017,542(7642): 468-470.
[31] Kroon D,Williams T,Pirmez C,et al. Coupled Early Pliocene-Middle Miocene bio-cyclostratigraphy of Site 1006 Reveals orbitally induced cyclicity patterns of Great Bahama Bank carbonate production[J]. Proceedings of the Ocean Drilling Program,Scientific Results,2000,166: 155-166.
[32] Li M S,Huang C J,Ogg J,et al. Paleoclimate proxies for cyclostratigraphy: Comparative analysis using a Lower Triassic marine section in South China[J]. Earth-Science Reviews,2019,189: 125-146.
[33] 武赛军,魏国齐,杨威,等. 四川盆地桐湾运动及其油气地质意义[J]. 天然气地球科学,2016,27(1):60-70.

Wu Saijun,Wei Guoqi,Yang Wei,et al. Tongwan Movement and its geologic significances in Sichuan Basin[J]. Natural Gas Geoscience,2016,27(1): 60-70.
[34] 张满郎,谢增业,李熙喆,等. 四川盆地寒武纪岩相古地理特征[J]. 沉积学报,2010,28(1):128-139.

Zhang Manlang,Xie Zengye,Li Xizhe,et al. Characteristics of lithofacies paleogeography of Cambrian in Sichuan Basin[J]. Acta Sedimentologica Sinica,2010,28(1): 128-139.
[35] 黄博宇. 四川盆地震旦纪:早寒武世岩相古地理与裂陷槽演化[D]. 北京:中国石油大学(北京),2018.
[36] 刘树根,刘殊,孙玮,等. 绵阳—长宁拉张槽北段构造—沉积特征[J]. 成都理工大学学报(自然科学版),2018,45(1):1-13.

Liu Shugen,Liu Shu,Sun Wei,et al. Tectonic and sedimentary features of the northern Mianyang-Changning intracratonic sag,Sichuan,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2018,45(1): 1-13.
[37] 朱茂炎,杨爱华,袁金良,等. 中国寒武纪综合地层和时间框架[J]. 中国科学(D辑):地球科学,2019,49(1):26-65.

Zhu Maoyan,Yang Aihua,Yuan Jinliang,et al. Cambrian integrative stratigraphy and timescale of China[J]. Science China (Seri. D): Earth Sciences,2019,49(1): 26-65.
[38] 朱茂炎,张智新,杨爱华,等. 中国寒武纪岩石地层划分和对比[J]. 地层学杂志,2021,45(3): 223-249.

Zhu Maoyan,Zhang Zhixin,Yang Aihua,et al. Lithostratigraphic subdivision and correlation of the Cambrian in China[J]. Journal of Stratigraphy,45(3):223-249.
[39] 梁霄,李香华,徐剑良,等. 从优质烃源岩到储层:构造—沉积分异格局下的四川盆地中西部下寒武统页岩气勘探前景[J]. 天然气工业,2021,41(5):30-41.

Liang Xiao,Li Xianghua,Xu Jianliang,et al. Exploration prospects of Lower Cambrian shale gas in the central-western Sichuan Basin under the pattern of tectonic-depositional differentiation: From high-quality source rocks to reservoirs[J]. Natural Gas Industry,2021,41(5): 30-41.
[40] 刘满仓,杨威,李其荣,等. 四川盆地蜀南地区寒武系地层划分及对比研究[J]. 天然气地球科学,2008,19(1):100-106.

Liu Mancang,Yang Wei,Li Qirong,et al. Characteristics and stratigraphic classification and correlation of Cambrian on south Sichuan Basin[J]. Natural Gas Geoscience,2008,19(1): 100-106.
[41] 罗超. 上扬子地区下寒武统牛蹄塘组页岩特征研究[D]. 成都:成都理工大学,2014.
[42] 薛耀松,周传明. 扬子区早寒武世早期磷质小壳化石的再沉积和地层对比问题[J]. 地层学杂志,2006,30(1):64-74.

Xue Yaosong,Zhou Chuanming. Resedimentation of the Early Cambrian phosphatized small shell fossils and correlation of the Sinian-Cambrian boundary strata in the Yangtze region,southern China[J]. Journal of Stratigraphy,2006,30(1): 64-74.
[43] 四川省地质矿产局. 四川省区域地质志[M]. 北京:地质出版社,1991.

Sichuan Bureau of Geology and Mineral Resources. Regional geology of Sichuan province[M]. Beijing: Geological Publishing House,1991.
[44] 潘晓强,董晓霞,代乔坤,等. 四川盆地井研—犍为地区寒武系第二统九老洞组古生物化石及其地层划分对比[J]. 微体古生物学报,2021,38(3):241-256.

Pan Xiaoqiang,Dong Xiao-xia,Dai Qiaokun,et al. Fossil assemblages and stratigraphic correlation of the Jiulaodong Formation (Early Cambrian) in the Jingyan-Qianwei area,Sichuan Basin[J]. Acta Micropalaeontologica Sinica,2021,38(3): 241-256.
[45] 王承红. 井研—犍为地区下寒武统筇竹寺组海相页岩孔隙演化[D]. 成都:成都理工大学,2017.
[46] Zhu R X,Li X H,Hou X G,et al. SIMS U-Pb zircon age of a tuff layer in the Meishucun section,Yunnan,southwest China: Constraint on the age of the Precambrian-Cambrian boundary[J]. Science in China Series D: Earth Sciences,2009,52(9): 1385-1392.
[47] Sawaki Y,Nishizawa M,Suo T,et al. Internal structures and U-Pb ages of zircons from a tuff layer in the Meishucunian Formation,Yunnan province,South China[J]. Gondwana Research,2008,14(1/2): 148-158.
[48] Jenkins R J E,Cooper J A,Compston W. Age and biostratigraphy of Early Cambrian tuffs from SE Australia and southern China[J]. Journal of the Geological Society,2002,159(6): 645-658.
[49] Compston W,Zhang Z C,Cooper J A,et al. Further SHRIMP geochronology on the Early Cambrian of South China[J]. American Journal of Science,2008,308(4): 399-420.
[50] 杨传. 华南埃迪卡拉系上部:寒武系下部高精度地质年代学[D]. 北京:中国科学院地质与地球物理研究所,2017.
[51] Cremonese L,Shields-Zhou G,Struck U,et al. Marine biogeochemical cycling during the Early Cambrian constrained by a nitrogen and organic carbon isotope study of the Xiaotan section,South China[J]. Precambrian Research,2013,225: 148-165.
[52] 赵建华,金之钧,林畅松,等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质,2019,40(4):701-715.

Zhao Jianhua,Jin Zhijun,Lin Changsong,et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology,2019,40(4): 701-715.
[53] Thomson D J. Spectrum estimation and harmonic analysis[J]. Proceedings of the IEEE,1982,70(9): 1055-1096.
[54] Weedon G. Time-series analysis and cyclostratigraphy[M]. Cambridge: Cambridge University Press,2003: 276.
[55] Kodama K P,Hinnov L A. Rock magnetic cyclostratigraphy: New analytical methods in earth and environmental science series[M]. Chichester: Wiley-Blackwell,2014: 1-147.
[56] Li M S,Hinnov L A,Huang C J,et al. Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing[J]. Nature Communications,2018,9(1): 1004.
[57] Cleveland W S. Robust locally weighted regression and smoothing scatterplots[J]. Journal of the American Statistical Association,1979,74(368): 829-836.
[58] Li M S,Hinnov L,Kump L. Acycle: Time-series analysis software for paleoclimate research and education[J]. Computers & Geosciences,2019,127: 12-22.
[59] 代大经,唐正松,陈鑫堂,等. 铀的地球化学特征及其测井响应在油气勘探中的应用[J]. 天然气工业,1995,15(5):21-24.

Dai Dajing,Tang Zhengsong,Chen Xintang,et al. U geochemical characteristics and the application of U logging response to oil-gas explobation[J]. Natural Gas Industry,1995,15(5): 21-24.
[60] Wignall P B,Myers K J. Interpreting benthic oxygen levels in mudrocks: A new approach[J]. Geology,1988,16(5): 452-455.
[61] Algeo T J,Rowe H. Paleoceanographic applications of trace mental concentration data[J]. Chemical Geology,2012,324-325: 6-18.
[62] 刘光泓,张世红,吴怀春. 前寒武纪旋回地层学研究的进展与挑战[J]. 地层学杂志,2020,44(3):239-249.

Liu Guanghong,Zhang Shihong,Wu Huaichun. Progress and challenges in Precambrian cyclostratigraphy research[J]. Journal of Stratigraphy,2020,44(3): 239-249.
[63] Berger A,Loutre M F. Astronomical forcing through geological time[M]//de Boer P L,Smith D G. Orbital forcing and cyclic sequences. Oxford: Blackwell Scientific Publications,1994: 15-24.
[64] Laskar J,Robutel P,Joutel F,et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics,2004,428(1): 261-285.
[65] Waltham D. Milankovitch Period uncertainties and their impact on cyclostratigraphy[J]. Journal of Sedimentary Research,2015,85(8): 990-998.
[66] 纪永朝. 云南会泽—井寒武纪早期旋回地层学研究[D]. 北京:中国地质大学(北京),2020.
[67] Crowley T J,Kim K Y,Mengel J G,et al. Modeling 100,000-year climate fluctuations in pre-Pleistocene time series[J]. Science,1992,255(5045): 705-707.
[68] Meyers S R,Sageman B B,Hinnov L A. Integrated quantitative stratigraphy of the Cenomanian-Turonian bridge creek limestone member using evolutive harmonic analysis and stratigraphic modeling[J]. Journal of Sedimentary Research,2001,71(4): 628-644.
[69] Catuneanu O,Abreu V,Bhattacharya J P,et al. Towards the standardization of sequence stratigraphy[J]. Earth-Science Reviews,2009,92(1/2): 1-33.
[70] Miller K G,Kominz M A,Browning J V,et al. The Phanerozoic record of global sea-level change[J]. Science,2005,310(5752): 1293-1298.
[71] Boulila S,Galbrun B,Miller K,et al. On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences[J]. Earth-Science Reviews,2011,109: 94-112.
[72] Wang M,Chen H H,Huang C J,et al. Astronomical forcing and sedimentary noise modeling of lake-level changes in the Paleogene Dongpu Depression of North China[J]. Earth and Planetary Science Letters,2020,535: 116116.
[73] Jin S D,Liu S B,Li Z,et al. Astrochronology of a Middle Eocene lacustrine sequence and sedimentary noise modeling of lake-level changes in Dongying Depression,Bohai Bay Basin[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2022,585: 110740.
[74] Mudelsee M. Climate time series analysis[M]. New York: Springer,2010: 454.
[75] Zhu M Y,Babcock L E,Peng S C. Advances in Cambrian stratigraphy and paleontology: Integrating correlation techniques,paleobiology,taphonomy and paleoenvironmental reconstruction[J]. Palaeoworld,2006,15(3/4): 217-222.
[76] Zhong Y Y,Wu H C,Zhang Y D,et al. Astronomical calibration of the Middle Ordovician of the Yangtze Block,South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2018,505: 86-89.
[77] Boulila S,Galbrun B,Miller K G,et al. On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences[J]. Earth-Science Reviews,2011,109(3/4): 94-112.
[78] Crampton J S,Meyers S R,Cooper R A,et al. Pacing of Paleozoic macroevolutionary rates by Milankovitch grand cycles[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(22): 5686-5691.
[79] 张喜,张廷山,赵晓明,等. 天文轨道周期及火山活动对中上扬子区晚奥陶世:早志留世有机碳聚集的影响[J]. 石油勘探与开发,2021,48(4):732-744.

Zhang Xi,Zhang Tingshan,Zhao Xiaoming,et al. Effects of astronomical orbital cycle and volcanic activity on organic carbon accumulation during Late Ordovician: Early Silurian in the Upper Yangtze area,South China[J]. Petroleum Exploration and Development,2021,48(4): 732-744.
[80] Abouelresh M O,Slatt R M. Lithofacies and sequence stratigraphy of the Barnett shale in east-central Fort Worth Basin,Texas[J]. AAPG Bulletin,2012,96(1): 1-22.
[81] Loucks R G,Ruppel S C. Mississippian Barnett shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin,Texas[J]. AAPG Bulletin,2007,91(4): 579-601.
[82] Ogg J G,Ogg G,Gradstein F M. A concise geologic time scale 2016[M]. Amsterdam: Elsevier,2016: 234-240.
[83] Shields G A,Mills B J W,Zhu M Y,et al. Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial[J]. Nature Geoscience,2019,12(10): 823-827.