[1] |
Mount J F. Mixing of siliciclastic and carbonate sediments in shallow shelf environments[J]. Geology, 1984, 12(7): 432-435. |
[2] |
张锦泉,叶红专. 论碳酸盐与陆源碎屑的混合沉积[J]. 成都地质学院学报,1989,16(2):87-92.
Zhang Jinquan, Ye Hongzhuan. A study on carbonate and siliciclastic mixed sediments[J]. Journal of Chengdu College of Geology, 1989, 16(2): 87-92. |
[3] |
江茂生,沙庆安. 碳酸盐与陆源碎屑混合沉积体系研究进展[J]. 地球科学进展,1995,10(6):551-554.
Jiang Maosheng, Sha Qing’an. Research advances in the mixed siliciclastic-carbonate sedimentary systems[J]. Advance in Earth Sciences, 1995, 10(6): 551-554. |
[4] |
Chiarella D, Longhitano S G, Tropeano M. Types of mixing and heterogeneities in siliciclastic-carbonate sediments[J]. Marine and Petroleum Geology, 2017, 88: 617-627. |
[5] |
Carcel D, Colombié C, Giraud F, et al. Tectonic and eustatic control on a mixed siliciclastic–carbonate platform during the Late Oxfordian–Kimmeridgian (La Rochelle platform, western France)[J]. Sedimentary Geology, 2010, 223(3/4): 334-359. |
[6] |
Schwarz E, Veiga G D, Trentini G Á, et al. Climatically versus eustatically controlled, sediment-supply-driven cycles: Carbonate-siliciclastic, high-frequency sequences in the Valanginian of the Neuquén Basin (Argentina)[J]. Journal of Sedimentary Research, 2016, 86(4): 312-335. |
[7] |
Zeller M, Verwer K, Eberli G P, et al. Depositional controls on mixed carbonate-siliciclastic cycles and sequences on gently inclined shelf profiles[J]. Sedimentology, 2015, 62(7): 2009-2037. |
[8] |
Tänavsuu-Milkeviciene K, Plink-Björklund P, Kirsimäe K, et al. Coeval versus reciprocal mixed carbonate-siliciclastic deposition, Middle Devonian Baltic Basin, eastern Europe: Implications from the regional tectonic development[J]. Sedimentology, 2009, 56(5): 1250-1274. |
[9] |
Isaack A, Gischler E, Hudson J H, et al. A new model evaluating Holocene sediment dynamics: Insights from a mixed carbonate-siliciclastic lagoon (Bora Bora, Society Islands, French Polynesia, South Pacific)[J]. Sedimentary Geology, 2016, 343: 99-118. |
[10] |
Korngreen D, Bialik O M. The characteristics of carbonate system recovery during a relatively dry event in a mixed carbonate/siliciclastic environment in the Pelsonian (Middle Triassic) proximal marginal marine basins: A case study from the tropical Tethyan northwest Gondwana margins[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440: 793-812. |
[11] |
Palermo D, Aigner T, Geluk M, et al. Reservoir potential of a lacustrine mixed carbonate/siliciclastic gas reservoir: The Lower Triassic Rogenstein in the Netherlands[J]. Journal of Petroleum Geology, 2008, 31(1): 61-96. |
[12] |
Feng J L, Cao J, Hu K, et al. Dissolution and its impacts on reservoir formation in moderately to deeply buried strata of mixed siliciclastic-carbonate sediments, northwestern Qaidam Basin, northwest China[J]. Marine and Petroleum Geology, 2013, 39(1): 124-137. |
[13] |
薛永安,庞小军,郝轶伟,等. 渤海海域秦南凹陷东南缘沙一段混积岩优质储层成因及勘探意义[J]. 地球科学,2020,45(10):3527-3542.
Xue Yong’an, Pang Xiaojun, Hao Yiwei, et al. Genesis of high-quality mixed rock reservoir and its exploration significance in Es1 around southeast margin of Qinnan Sag, Bohai Sea[J]. Earth Science, 2020, 45(10): 3527-3542. |
[14] |
Almeida Carvalho A M, Hamon Y, Gomes De Souza O, Jr, et al. Facies and diagenesis distribution in an Aptian pre-salt carbonate reservoir of the Santos Basin, offshore Brazil: A comprehensive quantitative approach[J]. Marine and Petroleum Geology, 2022, 141: 105708. |
[15] |
Győri O, Haas J, Hips K, et al. Dolomitization of shallow-water, mixed silicilastic-carbonate sequences: The Lower Triassic ramp succession of the Transdanubian Range, Hungary[J]. Sedimentary Geology, 2020, 395: 105549. |
[16] |
Khazaie E, Noorian Y, Kavianpour M, et al. Sedimentological and diagenetic impacts on porosity systems and reservoir heterogeneities of the Oligo-Miocene mixed siliciclastic and carbonate Asmari reservoir in the Mansuri oilfield, SW Iran[J]. Journal of Petroleum Science and Engineering, 2022, 213: 110435. |
[17] |
Hussain A, Butt M N, Olariu C, et al. Unravelling reservoir quality heterogeneity in mixed siliciclastic-carbonate deposits: An example from Miocene Red Sea rift, NW Saudi Arabia[J]. Marine and Petroleum Geology, 2022, 145: 105850. |
[18] |
Shehata A A, Kassem A A, Brooks H L, et al. Facies analysis and sequence-stratigraphic control on reservoir architecture: Example from mixed carbonate/siliciclastic sediments of Raha Formation, Gulf of Suez, Egypt[J]. Marine and Petroleum Geology, 2021, 131: 105160. |
[19] |
Kleipool L M, Reijmer J J G, Bádenas B, et al. Variations in petrophysical properties along a mixed siliciclastic carbonate ramp (Upper Jurassic, Ricla, NE Spain)[J]. Marine and Petroleum Geology, 2015, 68: 158-177. |
[20] |
杜学斌,刘晓峰,陆永潮,等. 陆相细粒混合沉积分类、特征及发育模式:以东营凹陷为例[J]. 石油学报,2020,41(11):1324-1333.
Du Xuebin, Liu Xiaofeng, Lu Yongchao, et al. Classification, characteristics and development models of continental fine-grained mixed sedimentation: A case study of Dongying Sag[J]. Acta Petrolei Sinica, 2020, 41(11): 1324-1333. |
[21] |
伊硕,王龙,倪军娥,等. 伊拉克M油田Asmari组混积储层隔夹层特征及地质意义[J]. 西安科技大学学报,2021,41(6):1014-1024.
Yi Shuo, Wang Long, Ni Jun’e, et al. Characteristics and geological significance of interlayers in mixed reservoir of Asmari Formation in M oilfield, Iraq[J]. Journal of Xi’an University of Science and Technology, 2021, 41(6): 1014-1024. |
[22] |
夏庆龙. 渤海油田近10年地质认识创新与油气勘探发现[J]. 中国海上油气,2016,28(3):1-9.
Xia Qinglong. Innovation of geological theories and exploration discoveries in Bohai oilfields in the last decade[J]. China Offshore Oil and Gas, 2016, 28(3): 1-9. |
[23] |
叶茂松,解习农,徐长贵,等. 混积岩分类命名体系探讨及对混积岩储层评价的启示:以渤海海域混积岩研究为例[J]. 地质论评,2018,64(5):1118-1131.
Ye Maosong, Xie Xinong, Xu Changgui, et al. Discussion for classification-designation system of mixed siliciclastic-carbonate sediments and the implication for their reservoir prediction: A case study of mixed sediments from Bohai Sea area[J]. Geological Review, 2018, 64(5): 1118-1131. |
[24] |
解习农,叶茂松,徐长贵,等. 渤海湾盆地渤中凹陷混积岩优质储层特征及成因机理[J]. 地球科学,2018,43(10):3526-3539.
Xie Xinong, Ye Maosong, Xu Changgui, et al. High quality reservoirs characteristics and forming mechanisms of mixed siliciclastic-carbonate sediments in the Bozhong Sag, Bohai Bay Basin[J]. Earth Science, 2018, 43(10): 3526-3539. |
[25] |
Ye M S, Xie X N, Xu C G, et al. Sedimentary features and their controls in a mixed siliciclastic-carbonate system in a shallow lake area: An example from the BZ-X block in the Huanghekou Sag, Bohai Bay Basin, eastern China[J]. Geological Journal, 2019, 54(4): 2016-2033. |
[26] |
叶茂松. 环渤中坳陷古近系沙河街组一二段混积岩特征及优质储层形成机理[D]. 武汉:中国地质大学,2019:36-38.
Ye Maosong. Characteristics of siliciclastic-carbonate sediments and forming mechanism of high-quality reservoirs in the member 1~2 of the Shahejie Formation, circum-Bozhong Depression, Bohai Bay Basin[D]. Wuhan: China University of Geosciences, 2019: 36-38. |
[27] |
杜晓峰,徐长贵,朱红涛,等. 陆相断陷盆地陆源碎屑与碳酸盐混合沉积研究进展[J]. 地球科学,2020,45(10):3509-3526.
Du Xiaofeng, Xu Changgui, Zhu Hongtao, et al. Research advances of mixed siliciclastic and carbonate sediments in continental rift basins[J]. Earth Science, 2020, 45(10): 3509-3526. |
[28] |
何仕斌,李丽霞,李建红. 渤中坳陷及其邻区第三系沉积特征和油气勘探潜力分析[J]. 中国海上油气(地质),2001,15(1):61-71.
He Shibin, Li Lixia, Li Jianhong. Tertiary sedimentology and hydrocarbon potential in Bozhong Depression and its adjacent area[J]. China Offshore Oil and Gas (Geology), 2001,15(1): 61-71. |
[29] |
刘士磊,王启飞,龚莹杰,等. 渤海海域古近纪微体化石组合特征及油气勘探意义[J]. 地层学杂志,2012,36(4):700-709.
Liu Shilei, Wang Qifei, Gong Yingjie, et al. Paleogene microfossil assemblages from the Bohai area and their importance for the oil and gas exploration[J]. Journal of Stratigraphy, 2012, 36(4): 700-709. |
[30] |
朱伟林. 中国近海含油盆地古湖泊学研究[D]. 上海:同济大学,2002:26-37.
Zhu Weilin. Oil-bearing basins offshore China: A paleolimnological perspective[D]. Shanghai: Tongji University, 2002: 26-37. |
[31] |
杜庆祥,郭少斌,沈晓丽,等. 渤海湾盆地南堡凹陷南部古近系沙河街组一段古水体特征[J]. 古地理学报,2016,18(2):173-183.
Du Qingxiang, Guo Shaobin, Shen Xiaoli, et al. Palaeo-water characteristics of the member 1 of Paleogene Shahejie Formation in southern Nanpu Sag,Bohai Bay Basin[J]. Journal of Palaeogeography, 2016, 18(2): 173-183. |
[32] |
高红灿,郑荣才,陈发亮,等. 渤海湾盆地东濮凹陷古近系沙河街组层序地层[J]. 石油与天然气地质,2011,32(6):839-850.
Gao Hongcan, Zheng Rongcai, Chen Faliang, et al. Sequence stratigraphy of the Paleogene Shahejie Formation in Dongpu Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2011, 32(6): 839-850. |
[33] |
刘晓晶,谢庆宾,徐翔,等. 辽河盆地东部凹陷古近系沙河街组层序地层及沉积相研究[J]. 东北石油大学学报,2015,39(6):1-11.
Liu Xiaojing, Xie Qingbin, Xu Xiang, et al. Sequence stratigraphy and sedimentary facies in the Shahejie Formation of the Paleogene in Dongbu Sag, Liaohe Basin[J]. Journal of Northeast Petroleum University, 2015, 39(6): 1-11. |
[34] |
Ma B J, Qin Z L, Betzler C, et al. Sedimentology of ephemeral carbonate accumulations in siliciclastic-dominated passive margin settings, Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2021, 130: 105122. |
[35] |
Duan Y J, Xie J, Li B C, et al. Lithology identification and reservoir characteristics of the mixed siliciclastic-carbonate rocks of the lower Third member of the Shahejie Formation in the south of the Laizhouwan Sag, Bohai Bay Basin, China[J]. Carbonates and Evaporites, 2020, 35(2): 55. |
[36] |
Fu M Y, Song R C, Gluyas J, et al. Diagenesis and reservoir quality of carbonates rocks and mixed siliciclastic as response of the Late Carboniferous glacio-eustatic fluctuation: A case study of Xiaohaizi Formation in western Tarim Basin[J]. Journal of Petroleum Science and Engineering, 2019, 177: 1024-1041. |
[37] |
Lü Z X, Zhang S L, Yin C, et al. Features and genesis of Paleogene high-quality reservoirs in lacustrine mixed siliciclastic-carbonate sediments, central Bohai Sea, China[J]. Petroleum Science, 2017, 14(1): 50-60. |
[38] |
Bloch S, Lander R H, Bonnell L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability[J]. AAPG Bulletin, 2002, 86(2): 301-328. |
[39] |
Duarte D, Milad B, Elmore R D, et al. Diagenetic controls on reservoir quality of a mixed carbonate-siliciclastic system: Sycamore Formation, Sho-Vel-Tum Field, Oklahoma, USA[J]. Marine and Petroleum Geology, 2021, 134: 105375. |