[1] Woods K D, Davis M B. Paleoecology of range limits: Beech in the upper peninsula of michigan[J]. Ecology, 1989, 70(3): 681-696.
[2] Lyford M E, Jackson S T, Gray S T, et al. Validating the use of woodrat (Neotoma) middens for documenting natural invasions[J]. Journal of Biogeography, 2004, 31(2): 333-342.
[3] Grimm E C. Fire and other factors controlling the big woods vegetation of minnesota in the mid-nineteenth century[J]. Ecological Monographs, 1984, 54(3): 291-311.
[4] Calcote R. Mid-Holocene climate and the hemlock decline: The range limit of Tsuga canadensis in the western Great Lakes region, USA[J]. The Holocene, 2003, 13(2): 215-224.
[5] Hewitt G. The genetic legacy of the Quaternary ice ages[J]. Nature, 2000, 405(6789): 907-913.
[6] Davis M B, Shaw R G. Range shifts and adaptive responses to Quaternary climate change[J]. Science, 2001, 292(5517): 673-679.
[7] Hu F S, Hampe A, Petit R J. Paleoecology meets genetics: Deciphering past vegetational dynamics[J]. Frontiers in Ecology and the Environment, 2009, 7(7): 371-379.
[8] Williams J W, Jackson S T, Kutzbach J E. Projected distributions of novel and disappearing climates by 2100 AD[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(14): 5738-5742.
[9] Willerslev E, Cappellini E, Boomsma W, et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland[J]. Science, 2007, 317(5834): 111-114.
[10] Parducci L, Bennett K D, Ficetola G F, et al. Ancient plant DNA in lake sediments[J]. New Phytologist, 2017, 214(3): 924-942.
[11] Hyland E, Smith S Y, Sheldon N D. Representational bias in phytoliths from modern soils of central North America: Implications for paleovegetation reconstructions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 374: 338-348.
[12] Wu H B, Guiot J, Brewer S, et al. Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: Reconstruction from pollen data using inverse vegetation modelling[J]. Climate Dynamics, 2007, 29(2/3): 211-229.
[13] Cheddadi R, Lamb H F, Guiot J, et al. Holocene climatic change in Morocco: A quantitative reconstruction from pollen data[J]. Climate Dynamics, 1998, 14(12): 883-890.
[14] 宋长青,陈旭东,罗运利,等. 表土孢粉模拟的中国生物群区[J]. 植物学报,2001,43(2):201-209.

Song Changqing, Chen Xudong, Chen Yunli, et al. Simulation of China biome reconstruction based on pollen data from surface sediment samples[J]. Acta Botanica Sinica, 2001, 43(2): 201-209.
[15] Anderson-Carpenter L L, McLachlan J S, Jackson S T, et al. Ancient DNA from lake sediments: Bridging the gap between paleoecology and genetics[J]. BMC Evolutionary Biology, 2011, 11: 30.
[16] Willerslev E, Hansen A J, Binladen J, et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments[J]. Science, 2003, 300(5620): 791-795.
[17] Zale R, Huang Y T, Bigler C, et al. Growth of plants on the Late Weichselian ice-sheet during Greenland interstadial-1?[J]. Quaternary Science Reviews, 2018, 185: 222-229.
[18] Pansu J, Giguet-Covex C, Ficetola G F, et al. Reconstructing long-term human impacts on plant communities: An ecological approach based on lake sediment DNA[J]. Molecular Ecology, 2015, 24(7): 1485-1498.
[19] Giguet-Covex C, Pansu J, Arnaud F, et al. Long livestock farming history and human landscape shaping revealed by lake sediment DNA[J]. Nature Communications, 2014, 5: 3211.
[20] Alsos I G, Sjögren P, Edwards M E, et al. Sedimentary ancient DNA from Lake Skartjørna, Svalbard: Assessing the resilience of arctic flora to Holocene climate change[J]. The Holocene, 2016, 26(4): 627-642.
[21] Stewart G J, Sinigalliano C D, Garko K A. Binding of exogenous DNA to marine sediments and the effect of DNA/sediment binding on natural transformation of Pseudomonas stutzeri strain ZoBell in sediment columns[J]. FEMS Microbiology Letters, 1991, 85(1): 1-8.
[22] de Bruyn M, Hall B L, Chauke L F, et al. Rapid response of a marine mammal species to Holocene climate and habitat change[J]. PLoS Genetics, 2009, 5(7): e1000554.
[23] Corrigan L J, Fabiani A, Chauke L F, et al. Population differentiation in the context of Holocene climate change for a migratory marine species, the southern elephant seal[J]. Journal of Evolutionary Biology, 2016, 29(9): 1667-1679.
[24] Lascoux M, Palmé A E, Cheddadi R, et al. Impact of Ice Ages on the genetic structure of trees and shrubs[J]. Philosophical Transactions of the Royal Society B, 2004, 359(1442): 197-207.
[25] Petit R J, Aguinagalde I, de Beaulieu J L, et al. Glacial refugia: Hotspots but not melting pots of genetic diversity[J]. Science, 2003, 300(5625): 1563-1565.
[26] Brewer S, Cheddadi R, de Beaulieu J L, et al. The spread of deciduous Quercus throughout Europe since the last glacial period[J]. Forest Ecology and Management, 2002, 156(1/2/3): 27-48.
[27] 侯卫国,董海良,蒋宏忱,等. 沉积物中古DNA在古生态、古环境和古气候研究中的应用[J]. 地学前缘,2017,24(2):286-291.

Hou Weiguo, Dong Hailiang, Jiang Hongchen, et al. Applications of ancient DNA preserved in sediment in paleo-ecology, paleo-environment and paleo-climate studies[J]. Earth Science Frontiers, 2017, 24(2): 286-291.
[28] Gugerli F, Parducci L, Petit R J. Ancient plant DNA: Review and prospects[J]. New Phytologist, 2005, 166(2): 409-418.
[29] Jacobson Jr G L, Bradshaw R H W. The selection of sites for paleovegetational studies[J]. Quaternary Research, 1981, 16(1): 80-96.
[30] Wilmshurst J M, McGlone M S. Origin of pollen and spores in surface lake sediments: Comparison of modern palynomorph assemblages in moss cushions, surface soils and surface lake sediments[J]. Review of Palaeobotany and Palynology, 2005, 136(1/2): 1-15.
[31] Chen X M, Huang X Z, Wu D, et al. Modern pollen assemblages in topsoil and surface sediments of the Xingyun Lake catchment, central Yunnan Plateau, China, and their implications for interpretation of the fossil pollen record[J]. Review of Palaeobotany and Palynology, 2017, 241: 1-12.
[32] Allen J R M, Huntley B. Estimating past floristic diversity in montane regions from macrofossil assemblages[J]. Journal of Biogeography, 1999, 26(1): 55-73.
[33] Birks H H. Plant macrofossil introduction[M]//Elias S A. Encyclopedia of Qquaternary science. Amsterdam: Elsevier, 2007: 2266-2288.
[34] Pedersen M W, Ginolhac A, Orlando L, et al. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa[J]. Quaternary Science Reviews, 2013, 75: 161-168.
[35] Lendvay B, Bálint M, Pál I, et al. Plant macrofossils from lake sediment as the material to assess ancient genetic diversity: Did deforestation influence Norway spruce (Picea abies) in the South Carpathians?[J]. Quaternary International, 2018, 477: 106-116.
[36] Barnes M A, Turner C R. The ecology of environmental DNA and implications for conservation genetics[J]. Conservation Genetics, 2016, 17(1): 1-17.
[37] Ficetola G F, Pansu J, Bonin A, et al. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data[J]. Molecular Ecology Resources, 2015, 15(3): 543-556.
[38] Yoccoz N G. The future of environmental DNA in ecology[J]. Molecular Ecology, 2012, 21(8): 2031-2038.
[39] Boessenkool S, McGlynn G, Epp L S, et al. Use of ancient sedimentary DNA as a novel conservation tool for high-altitude tropical biodiversity[J]. Conservation Biology, 2014, 28(2): 446-455.
[40] Sjögren P, Edwards M E, Gielly L, et al. Lake sedimentary DNA accurately records 20th Century introductions of exotic conifers in Scotland[J]. New Phytologist, 2017, 213(2): 929-941.
[41] Dabney J, Meyer M, Pääbo S. Ancient DNA damage[J]. Cold Spring Harbor Perspectives in Biology, 2013, 5(7): a012567.
[42] Zimmermann H H, Raschke E, Epp L S, et al. Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia)[J]. Biogeosciences, 2017, 14(3): 575-596.
[43] Poinar H, Kuch M, McDonald G, et al. Nuclear gene sequences from a Late Pleistocene sloth coprolite[J]. Current Biology, 2003, 13(13): 1150-1152.
[44] Ko A M S, Zhang Y Q, Yang M A, et al. Mitochondrial genome of a 22,000-year-old giant panda from southern China reveals a new panda lineage[J]. Current Biology, 2018, 28(12): R693-R694.
[45] Murray D C, Pearson S G, Fullagar R, et al. High-throughput sequencing of ancient plant and mammal DNA preserved in herbivore middens[J]. Quaternary Science Reviews, 2012, 58: 135-145.
[46] Willerslev E, Hansen A J, Poinar H N. Isolation of nucleic acids and cultures from fossil ice and permafrost[J]. Trends in Ecology & Evolution, 2004, 19(3): 141-147.
[47] Blum S A E, Lorenz M G, Wackernagel W. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils[J]. Systematic and Applied Microbiology, 1997, 20(4): 513-521.
[48] Birks H J B, Birks H H. How have studies of ancient DNA from sediments contributed to the reconstruction of Quaternary floras?[J]. New Phytologist, 2016, 209(2): 499-506.
[49] Torti A, Lever M A, Jørgensen B B. Origin, dynamics, and implications of extracellular DNA pools in marine sediments[J]. Marine Genomics, 2015, 24: 185-196.
[50] Crecchio C, Stotzky G. Binding of DNA on humic acids: Effect on transformation of Bacillus subtilis and resistance to DNase[J]. Soil Biology and Biochemistry, 1998, 30(8/9): 1061-1067.
[51] Höss M. Ancient DNA[J]. Hormone Research, 1995, 43(4): 118-120.
[52] Overballe-Petersen S, Harms K, Orlando L A A, et al. Bacterial natural transformation by highly fragmented and damaged DNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(49): 19860-19865.
[53] Pedersen M W, Ruter A, Schweger C, et al. Postglacial viability and colonization in North America’s ice-free corridor[J]. Nature, 2016, 537(7618): 45-49.
[54] Allentoft M E, Collins M, Harker D, et al. The half-life of DNA in bone: Measuring decay kinetics in 158 dated fossils[J]. Proceedings of the Royal Society B, 2012, 279(1748): 4724-4733.
[55] Valentini A, Taberlet P, Miaud C, et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding[J]. Molecular Ecology, 2016, 25(4): 929-942.
[56] Evans N T, Olds B P, Renshaw M A, et al. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding[J]. Molecular Ecology Resources, 2016, 16(1): 29-41.
[57] Willerslev E, Davison J, Moora M, et al. Fifty thousand years of Arctic vegetation and megafaunal diet[J]. Nature, 2014, 506(7486): 47-51.
[58] Suyama Y, Kawamuro K, Kinoshita I, et al. DNA sequence from a fossil pollen of Abies spp. from Pleistocene peat[J]. Genes & Genetic Systems, 1996, 71(3): 145-149.
[59] Deguilloux M F, Pemonge M H, Bertel L, et al. Checking the geographical origin of oak wood: Molecular and statistical tools[J]. Molecular Ecology, 2003, 12(6): 1629-1636.
[60] Pietramellara G, Ascher J, Borgogni F, et al. Extracellular DNA in soil and sediment: Fate and ecological relevance[J]. Biology and Fertility of Soils, 2009, 45(3): 219-235.
[61] 沈吉. 湖泊沉积研究的历史进展与展望[J]. 湖泊科学,2009,21(3):307-313.

Shen Ji. Progress and prospect of palaeolimnology research in China[J]. Journal of Lake Sciences, 2009, 21(3): 307-313.
[62] Thomsen P F, Willerslev E. Environmental DNA – An emerging tool in conservation for monitoring past and present biodiversity[J]. Biological Conservation, 2015, 183: 4-18.
[63] Giguet-Covex C, Pansu J, Arnaud F, et al. Long livestock farming history and human landscape shaping revealed by lake sediment DNA[J]. Nature Communications, 2014, 5: 3211.
[64] Downing J A, Cole J J, Middelburg J J, et al. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century[J]. Global Biogeochemical Cycles, 2008, 22(1): GB1018.
[65] Lembi C A. Limnology, lake and river ecosystems[J]. Journal of Phycology, 2001, 37(6): 1146-1147.
[66] Davis M B, Shaw R G, Etterson J R. Evolutionary responses to changing climate[J]. Ecology, 2005, 86(7): 1704-1714.
[67] Thomsen P F, Kielgast J, Iversen L L, et al. Detection of a diverse marine fish fauna using environmental DNA from seawater samples[J]. PLoS One, 2012, 7(8): e41732.
[68] Parducci L, Jørgensen T, Tollefsrud M M, et al. Glacial survival of boreal trees in northern Scandinavia[J]. Science, 2012, 335(6072): 1083-1086.
[69] Andersen K, Bird K L, Rasmussen M, et al. Meta-barcoding of 'dirt' DNA from soil reflects vertebrate biodiversity[J]. Molecular Ecology, 2012, 21(8): 1966-1979.
[70] Pedersen M W, Overballe-Petersen S, Ermini L, et al. Ancient and modern environmental DNA[J]. Philosophical Transactions of the Royal Society B, 2015, 370(1660): 20130383.
[71] Lydolph M C, Jacobsen J, Arctander P, et al. Beringian paleoecology inferred from permafrost-preserved fungal DNA[J]. Applied and Environmental Microbiology, 2005, 71(2): 1012-1017.
[72] Jørgensen T, Haile J, Möller P, et al. A comparative study of ancient sedimentary DNA, pollen and macrofossils from permafrost sediments of northern Siberia reveals long-term vegetational stability[J]. Molecular Ecology, 2012, 21(8): 1989-2003.
[73] Parducci L, Matetovici I, Fontana S L, et al. Molecular- and pollen-based vegetation analysis in lake sediments from central Scandinavia[J]. Molecular Ecology, 2014, 23(4): 986.
[74] Bellemain E, Davey M L, Kauserud H, et al. Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost[J]. Environmental Microbiology, 2013, 15(4): 1176-1189.
[75] Jørgensen T, Kjaer K H, Haile J, et al. Islands in the ice: Detecting past vegetation on Greenlandic nunataks using historical records and sedimentary ancient DNA meta-barcoding[J]. Molecular Ecology, 2012, 21(8): 1980-1988.
[76] Epp L S, Gussarova G, Boessenkool S, et al. Lake sediment multi-taxon DNA from North Greenland records early post-glacial appearance of vascular plants and accurately tracks environmental changes[J]. Quaternary Science Reviews, 2015, 117: 152-163.
[77] Rawlence N J, Lowe D J, Wood J R, et al. Using palaeoenvironmental DNA to reconstruct past environments: Progress and prospects[J]. Journal of Quaternary Science, 2014, 29(7): 610-626.
[78] Parducci L, Suyama Y, Lascoux M, et al. Ancient DNA from pollen: A genetic record of population history in Scots pine[J]. Molecular Ecology, 2005, 14(9): 2873-2882.
[79] Birks H H, Giesecke T, Hewitt G M, et al. Comment on “glacial survival of boreal trees in northern scandinavia”[J]. Science, 2012, 338(6108): 742.
[80] Bremond L, Favier C, Ficetola G F, et al. Five thousand years of tropical lake sediment DNA records from Benin[J]. Quaternary Science Reviews, 2017, 170: 203-211.
[81] Heinecke L, Epp L S, Reschke M, et al. Aquatic macrophyte dynamics in Lake Karakul (Eastern Pamir) over the last 29 cal ka revealed by sedimentary ancient DNA and geochemical analyses of macrofossil remains[J]. Journal of Paleolimnology, 2017, 58(3): 403-417.
[82] Clarke C L, Edwards M E, Brown A G, et al. Holocene floristic diversity and richness in northeast Norway revealed by sedimentary ancient DNA (sedaDNA) and pollen[J]. Boreas, 2019, 48(2): 299-316.
[83] Taberlet P, Coissac E, Pompanon F, et al. Towards next-generation biodiversity assessment using DNA metabarcoding[J]. Molecular Ecology, 2012, 21(8): 2045-2050.
[84] Hebert P D N, Cywinska A, Ball S L, et al. Biological identifications through DNA barcodes[J]. Proceedings of the Royal Society B, 2003, 270(1512): 313-321.
[85] Taberlet P, Coissac E, Pompanon F, et al. Power and limitations of the chloroplast trn L (UAA) intron for plant DNA barcoding[J]. Nucleic Acids Research, 2007, 35(3): e14.
[86] Sønstebø J H, Gielly L, Brysting A K, et al. Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate[J]. Molecular Ecology Resources, 2010, 10(6): 1009-1018.
[87] 杨晨雪,季吟秋,王晓阳,等. 基于18S rDNA的metabarcoading技术分析土壤小型动物多样性3种方法的比较[J]. 中国科学:生命科学,2012,42(12):993-1001.

Yang Chenxue, Ji Yinqiu, Wang Xiaoyang, et al. Testing three pipelines for 18S rDNA-based metabarcoding of soil faunal diversity[J]. Science China Life Sciences, 2012, 42(12): 993-1001.
[88] 杨江华. 太湖流域浮游动物物种多样性与环境污染群落生态效应研究[D]. 南京:南京大学,2017.

Yang Jianghua. Biodiversity of zooplankton and community effects of environmental pollution in Tai Lake Basin[D]. Nanjing: Nanjing University, 2017.
[89] Hirai J, Yasuike M, Fujiwara A, et al. Effects of plankton net characteristics on metagenetic community analysis of metazoan zooplankton in a coastal marine ecosystem[J]. Journal of Experimental Marine Biology and Ecology, 2015, 469: 36-43.
[90] Radulovici A E, Sainte-Marie B, Dufresne F. DNA barcoding of marine crustaceans from the Estuary and Gulf of St Lawrence: A regional‐scale approach[J]. Molecular Ecology Resources, 2009, 9(S1): 181-187.
[91] Alsos I G, Coissac E, Edwards M, et al. Plant DNA in sediments: To which degree do they represent the flora?[J]. Genome, 2015, 58(5): 186-186.
[92] 唐敏,伊廷双,王欣,等. Metabarcoding技术在植物鉴定和多样性研究中的应用[J]. 植物分类与资源学报,2013,35(6):769-773.

Tang Min, Yi Tingshuang, Wang Xin, et al. The application of metabarcoding technology in identification of plant species diversity[J]. Plant Diversity and Resources, 2013, 35(6): 769-773.
[93] Nguyen N H, Smith D, Peay K, et al. Parsing ecological signal from noise in next generation amplicon sequencing[J]. New Phytologist, 2015, 205(4): 1389-1393.
[94] Burgess K S, Fazekas A J, Kesanakurti P R, et al. Discriminating plant species in a local temperate flora using the rbcL+matK DNA barcode[J]. Methods in Ecology and Evolution, 2011, 2(4): 333-340.
[95] Fazekas A J, Kuzmina M L, Newmaster S G, et al. DNA barcoding methods for land plants[M]//Kress W J, Erickson D L. DNA barcodes: Methods and protocols. Totowa: Humana Press, 2012: 223-252.
[96] 张穗生,陈英,陈小玲. 微生物DNA条形码技术的研究进展[J]. 广西科学,2015,22(1):27-30.

Zhang Suisheng, Chen Ying, Chen Xiaoling. Progress in DNA barcoding of microorganism[J]. Guangxi Sciences, 2015, 22(1): 27-30.
[97] Blaalid R, Kumar S, Nilsson R H, et al. ITS1 versus ITS2 as DNA metabarcodes for fungi[J]. Molecular Ecology Resources, 2013, 13(2): 218-224.
[98] Bellemain E, Carlsen T, Brochmann C, et al. ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases[J]. BMC Microbiology, 2010, 10: 189.
[99] Cline J, Braman J C, Hogrefe H H. PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases[J]. Nucleic Acids Research, 1996, 24(18): 3546-3551.
[100] Paus A, Boessenkool S, Brochmann C, et al. Lake Store Finnsjøen – a key for understanding Lateglacial/early Holocene vegetation and ice sheet dynamics in the central Scandes Mountains[J]. Quaternary Science Reviews, 2015, 121: 36-51.
[101] Furlan E M, Gleeson D, Hardy C M, et al. A framework for estimating the sensitivity of eDNA surveys[J]. Molecular Ecology Resources, 2016, 16(3): 641-654.
[102] Tedersoo L, Anslan S, Bahram M, et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi[J]. MycoKeys, 2015, 10: 1-43.
[103] Yu D W, Ji Y Q, Emerson B C, et al. Biodiversity soup: Metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring[J]. Methods in Ecology, 2012, 3(4): 613-623.
[104] Pompanon F, Samadi S. Next generation sequencing for characterizing biodiversity: Promises and challenges[J]. Genetica, 2015, 143(2): 133-138.
[105] Díaz F P, Latorre C, Carrasco-Puga G, et al. Multiscale climate change impacts on plant diversity in the Atacama Desert[J]. Global Change Biology, 2019, 25(5): 1733-1745.
[106] Warwick S I, Al-Shehbaz I A, Sauder C A, et al. Phylogeny of Smelowskia and related genera (Brassicaceae) based on nuclear ITS DNA and chloroplast trnL intron DNA sequences[J]. Annals of the Missouri Botanical Garden, 2004, 91(1): 99-123.
[107] Michel F, Jacquier A, Dujon B. Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure[J]. Biochimie, 1982, 64(10): 867-881.
[108] Hao D C, Huang B L, Chen S L, et al. Evolution of the chloroplast trnL-trnF region in the gymnosperm lineages Taxaceae and Cephalotaxaceae[J]. Biochemical Genetics, 2009, 47(5/6): 351-369.
[109] Alsos I G, Lammers Y, Yoccoz N G, et al. Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation[J]. PLoS One, 2018, 13(4): e0195403.
[110] Binladen J, Gilbert M T P, Bollback J P, et al. The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing[J]. PLoS One, 2007, 2(2): e197.
[111] Valentini A, Miquel C, Nawaz M A, et al. New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: The trnL approach[J]. Molecular Ecology Resources, 2009, 9(1): 51-60.
[112] Boyer F, Mercier C, Bonin A, et al. OBITOOLS: A unix-inspired software package for DNA metabarcoding[J]. Molecular Ecology Resources, 2016, 16(1): 176-182.