[1] Wilson J L. Carbonate facies in geologic history[M]. Berlin: Springer-Verlag, 1975: 1-471.
[2] Bebout D G, Pendexter C. Secondary carbonate porosity as related to early Tertiary depositional facies, Zelten field, Libya[J]. AAPG Bulletin, 1975, 59(4): 665-693.
[3] Friedman G M. Reefs and porosity: Examples from the Indonesian Archipelago[J]. Proceedings of the South East Asia Petroleum Exploration Society, 1983, 6: 35-40.
[4] Loucks R L, Sullivan P A. Microrhombic calcite diagenesis and associated microporosity in deeply buried Lower Cretaceous shelf-margin limestones (abstract)[C]//SEPM annual midyear meeting abstracts. 1987: 49-50.
[5] Budd D A. Micro-rhombic calcite and microporosity in limestones: A geochemical study of the Lower Cretaceous thamama Group, U.A.E.[J]. Sedimentary Geology, 1989, 63(3/4): 293-311.
[6] Moshier S O. Microporosity in micritic limestones: A review[J]. Sedimentary Geology, 1989, 63(3/4): 191-213.
[7] Moshier S O. Development of microporosity in a micritic limestone reservoir, Lower Cretaceous, Middle East[J]. Sedimentary Geology, 1989, 63(3/4): 217-240.
[8] Perkins R D. Origin of micro-rhombic calcite matrix within Cretaceous reservoir rock, West Stuart City Trend, Texas[J]. Sedimentary Geology, 1989, 63(3/4): 313-321.
[9] Witt W, Gokdag H. Orbitolinid biostratigraphy of the Shuaiba Formation (Aptian), Oman: Implications for reservoir development[M]//Simmons M D. Micropaleontology and hydrocarbon exploration in the Middle East. London: Chapman and Hall, 1994: 221-234.
[10] Alsharhan A S, Nairn A E M. Sedimentary basins and petroleum geology of the Middle East[M]. Amsterdam: Elsevier, 1997: 1-843.
[11] Volery C, Davaud E, Foubert A, et al. Shallow-marine microporous carbonate reservoir rocks in the Middle East: Relationship with seawater Mg/Ca ratio and eustatic sea level[J]. Journal of Petroleum Geology, 2009, 32(4): 313-325.
[12] Volery C, Davaud E, Durlet C, et al. Microporous and tight limestones in the Urgonian Formation (Late Hauterivian to early Aptian) of the French Jura Mountains: Focus on the factors controlling the Formation of microporous facies[J]. Sedimentary Geology, 2010, 230(1/2): 21-34.
[13] de Periere M D, Durlet C, Vennin E, et al. Morphometry of micrite particles in Cretaceous microporous limestones of the Middle East: Influence on reservoir properties[J]. Marine and Petroleum Geology, 2011, 28(9): 1727-1750.
[14] Wilson J L. Limestone and dolomite reservoirs[M]//Hobson G D. Developments in petroleum geology2. London: Applied Science Publishers Ltd., 1980: 1-51.
[15] Maliva R G, Missimer T M, Clayton E A, et al. Diagenesis and porosity preservation in Eocene microporous limestones, South Florida, USA[J]. Sedimentary Geology, 2009, 217(1/2/3/4): 85-94.
[16] Volery C, Davaud E, Foubert A, et al. Lacustrine microporous micrites of the Madrid Basin (Late Miocene, Spain) as analogues for shallow-marine carbonates of the Mishrif reservoir Formation (Cenomanian to Early Turonian, Middle East)[J]. Facies, 2010, 56(3): 385-397.
[17] Lambert L, Durlet C, Loreau J P, et al. Burial dissolution of micrite in Middle East carbonate reservoirs (Jurassic-Cretaceous): Keys for recognition and timing[J]. Marine and Petroleum Geology, 2006, 23(1): 79-92.
[18] 高计县,田昌炳,张为民,等. 伊拉克鲁迈拉油田Mishrif组碳酸盐岩储层特征及成因[J]. 石油学报,2013,34(5):843-852.

Gao Jixian, Tian Changbing, Zhang Weimin, et al. Characteristics and genesis of carbonate reservoir of the Mishrif Formation in the Rumaila oil field, Iraq[J]. Acta Petrolei Sinica, 2013, 34(5): 843-852.
[19] 王昱翔,周文,郭睿,等. 伊拉克哈勒法耶油田塞迪组碳酸盐岩储层特征及高孔低渗成因分析[J]. 石油实验地质,2016,38(2):224-230.

Wang Yuxiang, Zhou Wen, Guo Rui, et al. Characteristics and origin of high porosity and low permeability carbonate reservoirs in the Sa’di Formation, Halfaya oil field, Iraq[J]. Petroleum Geology & Experiment, 2016, 38(2): 224-230.
[20] 金值民,谭秀成,郭睿,等. 伊拉克哈法亚油田白垩系Mishrif组碳酸盐岩孔隙结构及控制因素[J]. 沉积学报,2018,36(5):981-994.

Jin Zhimin, Tan Xiucheng, Guo Rui, et al. Pore structure characteristics and control factors of carbonate reservoirs: The Cretaceous Mishrif Formation, Halfaya oilfield, Iraq[J]. Acta Sedimentologica Sinica, 2018, 36(5): 981-994.
[21] 邓虎成,周文,郭睿,等. 伊拉克艾哈代布油田中—下白垩统碳酸盐岩储层孔隙结构及控制因素[J]. 岩石学报,2014,30(3):801-812.

Deng Hucheng, Zhou Wen, Guo Rui, et al. Pore structure characteristics and control factors of carbonate reservoirs: The Middle-Lower Cretaceous Formation, AI Hardy cloth oilfield, Iraq [J]. Acta Petrologica Sinica, 2014, 30(3): 801-812.
[22] 周文,郭睿,伏美燕,等. 伊拉克艾哈代布油田白垩系生物铸模孔及体腔孔发育的灰岩储层特征及成因分析[J]. 岩石学报,2014,30(3):813-821.

Zhou Wen, Guo Rui, Fu Meiyan, et al. Characteristics and origin of Cretaceous limestone reservoir with bio-moldic pore and intrafossil pore, in AHDEB oilfield, Iraq[J]. Acta Petrologica Sinica, 2014, 30(3): 813-821.
[23] 李峰峰,郭睿,余义常. 伊拉克M油田白垩系Mishrif组沉积特征及控储机理[J]. 沉积学报,2020,38(5):1076-1087.

Li Fengfeng, Guo Rui, Yu Yichang, et al. Sedimentary characteristics and control in reservoirs in the Cretaceous Mishrif Formation, M oilfield, Iraq[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1076-1087.
[24] 孙文举,乔占峰,邵冠铭,等. 伊拉克哈法亚油田中白垩统Mishrif组MB1-2亚段沉积与储集层构型[J]. 石油勘探与开发,2020,47(4):713-722.

Sun Wenju, Qiao Zhanfeng, Shao Guanming, et al. Sedimentary and reservoir architectures of MB1-2 sub-member of Middle Cretaceous Mishrif Formation of Halfaya oilfield in Iraq[J]. Petroleum Exploration and Development, 2020, 47(4): 713-722.
[25] Choquette P W, Pray L C. Geologic nomenclature and classification of porosity in sedimentary carbonates[J]. AAPG Bulletin, 1970, 54(2): 207-250.
[26] Hollis C, Vahrenkamp V, Tull S, et al. Pore system characterisation in heterogeneous carbonates: An alternative approach to widely-used rock-typing methodologies[J]. Marine and Petroleum Geology, 2010, 27(4): 772-793.
[27] Bruna P O, Guglielmi Y, Lamarche J, et al. Porosity gain and loss in unconventional reservoirs: Example of rock typing in Lower Cretaceous hemipelagic limestones, SE France (Provence)[J]. Marine and Petroleum Geology, 2013, 48: 186-205.
[28] Eltom H, Abdullatif O, Makkawi M, et al. Microporosity in the Upper Jurassic Arab-D carbonate reservoir, central Saudi Arabia: An outcrop analogue study[J]. Journal of Petroleum Geology, 2013, 36(3): 281-297.
[29] Pittman E D. Microporosity in carbonate rocks: Geological notes[J]. AAPG Bulletin, 1971, 55(10): 1873-1878.
[30] Cantrell D L, Hagerty R M. Microporosity in Arab Formation carbonates, Saudi Arabia[J]. GeoArabia, 1999, 4(2): 129-154.
[31] Trabelsi A, Beg M A. Characterization and mapping of burrowed and microporous intervals in the Arab D reservoir, dukhan field, Qatar[C]//Abu Dhabi international petroleum exhibition and conference. Abu Dhabi, United Arab: Society of Petroleum Engineers, 2000.
[32] Smith L B, Eberli G P, Masaferro J L, et al. Discrimination of effective from ineffective porosity in heterogeneous Cretaceous carbonates, Al Ghubar field, Oman[J]. AAPG Bulletin, 2003, 87(9): 1509-1529.
[33] Richard J, Sizun J P, Machhour L. Development and compartmentalization of chalky carbonate reservoirs: The Urgonian Jura-Bas Dauphiné platform model (Génissiat, southeastern France)[J]. Sedimentary Geology, 2007, 198(3/4): 195-207.
[34] Fournier F, Borgomano J. Critical porosity and elastic properties of microporous mixed carbonate-siliciclastic rocks[J]. Geophysics, 2009, 74(2): E93-E109.
[35] Vincent B, Fleury M, Santerre Y, et al. NMR relaxation of neritic carbonates: An integrated petrophysical and petrographical approach[J]. Journal of Applied Geophysics, 2011, 74(1): 38-58.
[36] Petricola M J C, Takezaki H, Asakura S. Saturation evaluation in micritic reservoirs: Raising to the challenge[C]//Abu Dhabi international petroleum exhibition and conference. Abu Dhabi, United Arab: Society of Petroleum Engineers, 2002.
[37] Mallon A J, Swarbrick R E. How should permeability be measured in fine-grained lithologies? Evidence from the chalk[J]. Geofluids, 2008, 8(1): 35-45.
[38] Hasiuk F J, Kaczmarek S E, Fullmer S M. Diagenetic origins of the calcite microcrystals that host microporosity in limestone reservoirs[J]. Journal of Sedimentary Research, 2016, 86(10): 1163-1178.
[39] Kaczmarek S E, Fullmer S M, Hasiuk F J. A universal classification scheme for the microcrystals that host limestone microporosity[J]. Journal of Sedimentary Research, 2015, 85(10): 1197-1212.
[40] Lucia F J. Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization[J]. AAPG Bulletin, 1995, 79(9): 1275-1300.
[41] Lucia F J. Carbonate reservoir characterization[M]. Berlin: Springer-Verlag, 1999: 1-226.
[42] Melim L A, Anselmetti F S, Eberli G P. The importance of pore type on permeability of Neogene carbonates, Great Bahama bank[M]//Ginsburg R N. Subsurface geology of a prograding carbonate platform margin, great bahama bank: Results of the Bahamas drilling project. Tulsa: SEPM Society for Sedimentary Geology, 2001: 217-238.
[43] Rifai R I. Origin of micro-rhombic calcite and associated microporosity in Upper Jurassic carbonate rocks, North Sinai, Egypt[J]. Al-Azhar Bulletin of Science, 2002, 13(1): 59-78.
[44] Clerke E A, Mueller III H W, Phillips E C, et al. Application of Thomeer hyperbolas to decode the pore systems, facies and reservoir properties of the Upper Jurassic Arab D limestone, Ghawar field, Saudi Arabia: A “Rosetta Stone” approach[J]. GeoArabia, 2008, 13(4): 113-160.
[45] Loucks R G, Lucia F J, Waite L E. Origin and description of the micropore network within the Lower Cretaceous Stuart City Trend tight-gas limestone reservoir in Pawnee Field in South Texas[J]. GCAGS Journal, 2013, 2: 29-41.
[46] Lønøy A. Making sense of carbonate pore systems[J]. AAPG Bulletin, 2006, 90(9): 1381-1405.
[47] Archie G E. Classification of carbonate reservoir rocks and petrophysical considerations[J]. AAPG Bulletin, 1952, 36(2): 278-298.
[48] Jodry R L. Pore geometry of carbonate rocks, basic geologic concepts[M]//Chilingar G V, Mannon R W, Rieke H H. Oil and gas production from carbonate rocks. Amsterdam: Elsevier, 1972: 35-82.
[49] Ahr W M. Early diagenetic microporosity in the Cotton Valley Limestone of east Texas[J]. Sedimentary Geology, 1989, 63(3/4): 275-292.
[50] Kaldi J. Diagenetic microporosity (chalky porosity), Middle Devonian Kee Scarp reef complex, Norman Wells, Northwest Territories, Canada[J]. Sedimentary Geology, 1989, 63(3/4): 241-252.
[51] Saller A H, Moore C H. Meteoric diagenesis, marine diagenesis, and microporosity in Pleistocene and Oligocene limestones, Enewetak Atoll, Marshall Islands[J]. Sedimentary Geology, 1989, 63(3/4): 253-272.
[52] Munnecke A, Westphal H, Reijmer J J G, et al. Microspar development during early marine burial diagenesis: A comparison of Pliocene carbonates from the Bahamas with Silurian limestones from Gotland (Sweden)[J]. Sedimentology, 1997, 44(6): 977-990.
[53] Turpin M, Emmanuel L, Renard M. Nature and origin of carbonate particles along a transect on the western margin of Great Bahama Bank (Middle Miocene): Sedimentary processes and depositional model[J]. Bulletin de la Société Géologique de France, 2008, 179(3): 231-244.
[54] Turpin M, Emmanuel L, Reijmer J J G, et al. Whiting-related sediment export along the Middle Miocene carbonate ramp of Great Bahama Bank[J]. International Journal of Earth Sciences, 2011, 100(8): 1875-1893.
[55] Al-Aasm I S, Azmy K K. Diagenesis and evolution of microporosity of Middle-Upper Devonian Kee Scarp Reefs, Norman Wells, Northwest Territories, Canada: Petrographic and chemical evidence[J]. AAPG Bulletin, 1996, 80(1): 82-99.
[56] Loucks R G, Moody R T J, Bellis J K, et al. Regional depositional setting and pore network systems of the El Garia Formation (Metlaoui Group, Lower Eocene), offshore Tunisia[M]//MacGregor D S, Moody R T J, Clark-Lowes D D. Petroleum geology of North Africa. Geological Society, London, Special Publications, 1998, 132(1): 355-374.
[57] Land L S. Chert-chalk diagenesis: The Miocene island slope of North Jamaica[J]. Journal of Sedimentary Petrology, 1979, 49(1): 223-232.
[58] Dravis J J. Sedimentology and diagenesis of the Upper Cretaceous Austin Chalk Formation, south Texas and northern Mexico[D]. Houston: Rice University, 1980: 1-367.
[59] Holail H, Lohmann K C. The role of early lithification in development of chalky porosity in calcitic micrites: Upper Cretaceous chalks, Egypt[J]. Sedimentary Geology, 1994, 88(3/4): 193-200.
[60] Ehrenberg S N, Aqrawi A A M, Nadeau P H. An overview of reservoir quality in producing Cretaceous strata of the Middle east[J]. Petroleum Geoscience, 2008, 14(4): 307-318.
[61] Sandberg P A. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy[J]. Nature, 1983, 305(5929): 19-22.
[62] Hardie L A. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y[J]. Geology, 1996, 24(3): 279-283.
[63] Lowenstein T K, Timofeeff M N, Brennan S T, et al. Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions[J]. Science, 2001, 294(5544): 1086-1088.
[64] Stanley S M, Ries J B, Hardie L A. Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(24): 15323-15326.
[65] Dickson J A D. Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans[J]. Science, 2002, 298(5596): 1222-1224.
[66] Dickson J A D. Echinoderm skeletal preservation: Calcite-aragonite Seas and the Mg/Ca ratio of Phanerozoic oceans[J]. Journal of Sedimentary Research, 2004, 74(3): 355-365.
[67] Siemann M G. Extensive and rapid changes in seawater chemistry during the Phanerozoic: Evidence from Br contents in basal halite[J]. Terra Nova, 2003, 15(4): 243-248.
[68] Stanley S M, Hardie L A. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 144(1/2): 3-19.
[69] Moss S, Tucker M E. Diagenesis of Barremian-Aptian platform carbonates (the Urgonian Limestone Formation of SE France): Near-surface and shallow-burial diagenesis[J]. Sedimentology, 1995, 42(6): 853-874.
[70] Lasemi Z, Sandberg P A. Transformation of aragonite-dominated lime muds to microcrystalline limestones[J]. Geology, 1984, 12(7): 420-423.
[71] Melim L A, Westphal H, Swart P K, et al. Questioning carbonate diagenetic paradigms: Evidence from the Neogene of the Bahamas[J]. Marine Geology, 2002, 185(1/2): 27-53.
[72] Hamilton G D. Styles of reservoir development in Middle Devonian carbonates of southwestern Ontario[D]. Waterloo: University of Waterloo, 1991: 1-203.
[73] Cox P A, Wood R A, Dickson J A D, et al. Dynamics of cementation in response to oil charge: Evidence from a Cretaceous carbonate field, U.A.E.[J]. Sedimentary Geology, 2010, 228(3/4): 246-254.
[74] Dravis J J. Deep-burial microporosity in Upper Jurassic Haynesville oolitic grainstones, East Texas[J]. Sedimentary Geology, 1989, 63(3/4): 325-341.
[75] 叶德胜. 碳酸盐岩中的一种储集空间:微孔隙[J]. 石油与天然气地质,1992,13(2):125-134.

Ye Desheng. A reservoir type in carbonate rocks: Microporosity[J]. Oil & Gas Geology, 1992, 13(2): 125-134.
[76] Coimbra R, Immenhauser A, Olóriz F. Matrix micrite δ13C and δ18O reveals synsedimentary marine lithification in Upper Jurassic Ammonitico Rosso limestones (Betic Cordillera, SE Spain)[J]. Sedimentary Geology, 2009, 219(1/2/3/4): 332-348.
[77] Jones B, Kahle C F. Origin of endogenetic micrite in karst terrains: A case study from the Cayman islands[J]. Journal of Sedimentary Research (SEPM), 1995, 65A(2): 283-293.
[78] Rameil N, Immenhauser A, Csoma A É, et al. Surfaces with a long history: The Aptian top Shu'aiba Formation unconformity, Sultanate of Oman[J]. Sedimentology, 2012, 59(1): 212-248.
[79] Léonide P, Fournier F, Reijmer J J G, et al. Diagenetic patterns and pore space distribution along a platform to outer-shelf transect (Urgonian limestone, Barremian-Aptian, SE France)[J]. Sedimentary Geology, 2014, 306: 1-23.
[80] Hollis C. Diagenetic controls on reservoir properties of carbonate successions within the Albian-Turonian of the Arabian Plate[J]. Petroleum Geoscience, 2011, 17(3): 223-241.
[81] de Periere M D, Durlet C, Vernnin E, et al. Influence of a major exposure surface on the development of microporous micritic limestones -Example of the Upper Mishrif Formation (Cenomanian) of the Middle East[J]. Sedimentary Geology, 2017, 353: 96-113.
[82] Farzadi P. The development of Middle Cretaceous carbonate platforms, Persian Gulf, Iran: Constraints from seismic stratigraphy, well and biostratigraphy[J]. Petroleum Geoscience, 2006, 12(1): 59-68.
[83] Farzadi P, Hesthammer J. Diagnosis of the Upper Cretaceous palaeokarst and turbidite systems from the Iranian Persian Gulf using volume-based multiple seismic attribute analysis and pattern recognition[J]. Petroleum Geoscience, 2007, 13(3): 227-240.
[84] Hajikazemi E, Al-Aasm I S, Coniglio M. Chemostratigraphy of Cenomanian-Turonian carbonates of the Sarvak Formation, southern Iran[J]. Journal of Petroleum Geology, 2012, 35(2): 187-205.
[85] Ostwald W. Lehrbuch der allgemeinen chemie[M]. Leipzig: Verlag von Wilhelm Engelmann, 1887: 1-909.
[86] Baronnet A. Ostwald ripening in solution -The case of calcite and mica[J]. Estudios Geologicos, 1982, 38: 185-198.
[87] Morse J W, Casey W H. Ostwald processes and mineral paragenesis in sediments[J]. American Journal of Science, 1988, 288(6): 537-560.
[88] Wonders A A H. Middle and Late Cretaceous pelagic sediments of the Umbrian sequence in the Central Apennines[J]. Koninklijke Nederlandse Akademie van Wetenschappen, B, 1978, 82: 171-205.
[89] Ferry S, Schaaf A. The early Cretaceous environment at deep sea drilling project site 463 (Mid-Pacific Mountains), with reference to the vocontian trough (French Subalpine Ranges)[M]//Thiede J, Vallier T L, Adelseck C G. Initial reports of the deep sea drilling project, volume62. Washington, US: Government Printing Office, 1981: 669-682.
[90] Carpentier C, Ferry S, Lécuyer C, et al. Origin of micropores in Late Jurassic (Oxfordian) micrites of the eastern Paris Basin, France[J]. Journal of Sedimentary Research, 2015, 85(6): 660-682.
[91] 叶德胜. 塔里木盆地北部上丘里塔格群致密灰岩微孔储层的发现及意义[J]. 石油实验地质,1993,15(2):174-184.

Ye Desheng. The discovery of compacted limestone microporous reservoir in the Upper Qiulitage Group, the northern Tarim Basin and its significance[J]. Experiment Petroleum Geology, 1993, 15(2): 174-184.