[1] Schmitt R W. Salinity and the global water cycle[J]. Oceanography, 2008, 21(1): 12-19.
[2] Durack P J. Ocean salinity and the global water cycle[J]. Oceanography, 2015, 28(1): 20-31.
[3] Vinogradova N, Lee T, Boutin J, et al. Satellite salinity observing system: Recent discoveries and the way forward[J]. Frontiers in Marine Science, 2019, 6: 243.
[4] Wunsch C. Modern observational physical oceanography: Understanding the global ocean[M]. Princeton: Princeton University Press, 2015: 1-477.
[5] Soeder D J. Greenhouse gas and climate change[M]//Soeder D J. Energy futures: The story of fossil fuel, greenhouse gas, and climate change. Cham: Springer, 2025: 97-141.
[6] Cheng L J, Trenberth K E, Gruber N, et al. Improved estimates of changes in upper ocean salinity and the hydrological cycle[J]. Journal of Climate, 2020, 33(23): 10357-10381.
[7] Cheng L J, Abraham J, Trenberth K E, et al. Another year of record heat for the oceans[J]. Advances in Atmospheric Sciences, 2023, 40(6): 963-974.
[8] Hay W W, Migdisov A, Balukhovsky A N, et al. Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and life[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1/2): 3-46.
[9] Weiss R F. The solubility of nitrogen, oxygen and argon in water and seawater[J]. Deep Sea Research and Oceanographic Abstracts, 1970, 17(4): 721-735.
[10] Knauth L P. Temperature and salinity history of the Precambrian ocean: Implications for the course of microbial evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(1/2): 53-69.
[11] Knauth L P. Salinity history of the Earth's early ocean[J]. Nature, 1998, 395(6702): 554-555.
[12] Whitfield A K, Elliott M, Basset A, et al. Paradigms in estuarine ecology – A review of the Remane diagram with a suggested revised model for estuaries[J]. Estuarine, Coastal and Shelf Science, 2012, 97: 78-90.
[13] Marotzke J. Abrupt climate change and thermohaline circulation: Mechanisms and predictability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(4): 1347-1350.
[14] 陈洪德,李洁,张成弓,等. 鄂尔多斯盆地山西组沉积环境讨论及其地质启示[J]. 岩石学报,2011,27(8):2213-2229.

Chen Hongde, Li Jie, Zhang Chenggong, et al. Discussion of sedimentary environment and its geological enlightenment of Shanxi Formation in Ordos Basin[J]. Acta Petrologica Sinica, 2011, 27(8): 2213-2229.
[15] 文华国,郑荣才,唐飞,等. 鄂尔多斯盆地耿湾地区长6段古盐度恢复与古环境分析[J]. 矿物岩石,2008,28(1):114-120.

Wen Huaguo, Zheng Rongcai, Tang Fei, et al. Reconstruction and analysis of paleosalanity and paleoenvironment of the Chang 6 member in the Gengwan region, Ordos Basin[J]. Mineralogy and Petrology, 2008, 28(1): 114-120.
[16] 王益友,郭文莹,张国栋. 几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用[J]. 同济大学学报,1979(2):51-60.

Wang Yiyou, Guo Wenying, Zhang Guodong. Application of some geochemical indicators in determining of sedimentary environment of the Funing Group (Paleogene), Jin-Hu Depression, Kiangsu province[J]. Journal of Tongji University, 1979(2): 51-60.
[17] Hoffman P F, Abbot D S, Ashkenazy Y, et al. Snowball Earth climate dynamics and Cryogenian geology-geobiology[J]. Science Advances, 2017, 3(11): e1600983.
[18] Stevens C H. Was development of brackish oceans a factor in Permian extinctions?[J]. GSA Bulletin, 1977, 88(1): 133-138.
[19] Waddell L M, Moore T C. Salinity of the Eocene Arctic Ocean from oxygen isotope analysis of fish bone carbonate[J]. Paleoceanography, 2008, 23(1): PA1S12.
[20] Railsback L B, Anderson T F, Ackerly S C, et al. Paleoceanographic modeling of temperature-salinity profiles from stable isotopic data[J]. Paleoceanography, 1989, 4(5): 585-591.
[21] Walker C T. Separation techniques in sedimentary geochemistry illustrated by studies of boron[J]. Nature, 1962, 194(4833): 1073-1074.
[22] Walker C T, Price N B. Departure curves for computing paleosalinity from boron in illites and shales[J]. AAPG Bulletin, 1963, 47(5): 833-841.
[23] Adams T D, Haynes J R, Walker C T. Boron in holocene illites of the dovey estuary, wales, and its relationship to palaeosalinity in cyclothems[J]. Sedimentology, 1965, 4(3): 189-195.
[24] Couch E L. Calculation of paleosalinities from boron and clay mineral data[J]. AAPG Bulletin, 1971, 55(10): 1829-1837.
[25] Degens E T, Williams E G, Keith M L. Environmental studies of carboniferous sediments Part I: Geochemical criteria for differentiating marine from fresh-water shales[J]. AAPG Bulletin, 1957, 41(11): 2427-2455.
[26] Wei W, Algeo T J. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks[J]. Geochimica et Cosmochimica Acta, 2020, 287: 341-366.
[27] Wang A H, Wang Z H, Liu J K, et al. The Sr/Ba ratio response to salinity in clastic sediments of the Yangtze River Delta[J]. Chemical Geology, 2021, 559: 119923.
[28] 王爱华. 不同形态锶钡比的沉积环境判别效果比较[J]. 沉积学报,1996,14(4):168-173.

Wang Aihua. Discriminant effect of sedimentary environment by the Sr/Ba ratio of different exising forms[J]. Acta Sedimentologica Sinica, 1996, 14(4): 168-173.
[29] Berner R A, Raiswell R. Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: A new theory[J]. Geochimica et Cosmochimica Acta, 1983, 47(5): 855-862.
[30] Berner R A, Raiswell R. C/S method for distinguishing fresh-water from marine sedimentary rocks[J]. Geology, 1984, 12(6): 365-368.
[31] Campbell F A, Lerbekmo J F. Mineralogic and chemical variations between Upper Cretaceous continental Belly River shales and marine Wapiabi shales in western Alberta, Canada[J]. Sedimentology, 1963, 2(3): 215-226.
[32] Campbell F A, Williams G D. Chemical composition of shales of Mannville Group (Lower Cretaceous) of central Alberta, Canada[J]. AAPG Bulletin, 1965, 49(1): 81-87.
[33] Nelson B W. Sedimentary phosphate method for estimating paleosalinities[J]. Science, 1967, 158(3803): 917-920.
[34] Geerken E, de Nooijer L, Toyofuku T, et al. High precipitation rates characterize biomineralization in the benthic foraminifer Ammonia beccarii [J]. Geochimica et Cosmochimica Acta, 2022, 318: 70-82.
[35] Wit J C, de Nooijer L J, Wolthers M, et al. A novel salinity proxy based on Na incorporation into foraminiferal calcite[J]. Biogeosciences, 2013, 10(10): 6375-6387.
[36] Adkins J F, McIntyre K, Schrag D P. The salinity, temperature, and δ18O of the glacial deep ocean[J]. Science, 2002, 298(5599): 1769-1773.
[37] Schmidt M W, Spero H J, Lea D W. Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation[J]. Nature, 2004, 428(6979): 160-163.
[38] Wei W, Yu W C, Algeo T J, et al. Boron proxies record paleosalinity variation in the North American Midcontinent Sea in response to Carboniferous glacio-eustasy[J]. Geology, 2022, 50(5): 537-541.
[39] Schouten S, Ossebaar J, Schreiber K, et al. The effect of temperature, salinity and growth rate on the stable hydrogen isotopic composition of long chain alkenones produced by Emiliania huxleyi and Gephyrocapsa oceanica [J]. Biogeosciences, 2006, 3(1): 113-119.
[40] Weiss G M, Pfannerstill E Y, Schouten S, et al. Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi [J]. Biogeosciences, 2017, 14(24): 5693-5704.
[41] Rosell-Melé A. Interhemispheric appraisal of the value of alkenone indices as temperature and salinity proxies in high-latitude locations[J]. Paleoceanography, 1998, 13(6): 694-703.
[42] Liu W G, Liu Z H, Fu M Y, et al. Distribution of the C37 tetra-unsaturated alkenone in Lake Qinghai, China: A potential lake salinity indicator[J]. Geochimica et Cosmochimica Acta, 2008, 72(3): 988-997.
[43] Turich C, Freeman K H. Archaeal lipids record paleosalinity in hypersaline systems[J]. Organic Geochemistry, 2011, 42(9): 1147-1157.
[44] He Y X, Wang H Y, Meng B W, et al. Appraisal of alkenone- and archaeal ether-based salinity indicators in mid-latitude Asian lakes[J]. Earth and Planetary Science Letters, 2020, 538: 116236.
[45] Wang H Y, Dong H L, Zhang C L, et al. Deglacial and Holocene archaeal lipid-inferred paleohydrology and paleotemperature history of Lake Qinghai, northeastern Qinghai–Tibetan Plateau[J]. Quaternary Research, 2015, 83(1): 116-126.
[46] Wang H Y, Liu W G, Zhang C L, et al. Assessing the ratio of archaeol to caldarchaeol as a salinity proxy in highland lakes on the northeastern Qinghai–Tibetan Plateau[J]. Organic Geochemistry, 2013, 54: 69-77.
[47] Millero F J, Feistel R, Wright D G, et al. The composition of standard seawater and the definition of the reference:Composition salinity scale[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2008, 55(1): 50-72.
[48] Millero F J. History of the equation of state of seawater[J]. Oceanography, 2010, 23(3): 18-33.
[49] IAPSO Working Group on Symbols. The International System of Units (SI) in oceanography[R]. Paris: UNESCO, 1985: 1-131.
[50] Pilson M E Q. An introduction to the chemistry of the sea[M]. 2nd ed. Cambridge: Cambridge University Press, 2012: 1-543.
[51] Marcet A. On the specific gravity, and temperature of sea waters, in different parts of the ocean, and in particular seas; with some account of their saline contents[J]. Philosophical Transactions of the Royal Society of London, 1819, 109(189): 161-208.
[52] Forchhammer G. On the composition of sea-water in the different parts of the ocean[J]. Philosophical Transactions of the Royal Society of London, 1865, 155(1865): 203-262.
[53] Dittmar W. Report on the scientific results of the exploring voyage of H.M.S. Challenger[R]. Physics and Chemistry 1. London, 1884: 1-251.
[54] Knudsen M. Hydrographische tabellen[M]. London: G.E.C. Gad, Copenhagen, and Williams Norgate, 1901: 1-63.
[55] Cox R A, Culkin F, Riley J P. The electrical conductivity/chlorinity relationship in natural sea water[J]. Deep Sea Research and Oceanographic Abstracts, 1967, 14(2): 203-220.
[56] Lewis E L, Perkin R G. The practical salinity scale 1978: Conversion of existing data[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1981, 28(4): 307-328.
[57] Unesco. Background papers and supporting data on the International equation of State of Seawater, 1980[M]. Paris: UNESCO, 1981: 1-192.
[58] van Vlaardingen P L A, Verbruggen E M J. Guidance for the derivation of environmental risk limits within the framework of 'International and national environmental quality standards for substances in the Netherlands' (INS)[R]. Bilthoven: RIVM, 2007: 1-146.
[59] 魏巍, Algeo T J,陆永潮,等. 古盐度指标与渤海湾盆地古近系海侵事件初探[J]. 沉积学报,2021,39(3):571-592.

Wei Wei, Algeo T J, Lu Yongchao, et al. Paleosalinity proxies and marine incursions into the Paleogene Bohai Bay Basin lake system, northeastern China[J]. Acta Sedimentologica Sinica, 2021, 39(3): 571-592.
[60] Hay W W. The role of polar deep water formation in global climate change[J]. Annual Review of Earth and Planetary Sciences, 1993, 21: 227-254.
[61] Cindrella J, Renjith K R. Understanding the role of oceans in global sustainability: Biogeochemistry and challenges in the anthropocene[M]//Jindal M K, David A, Khandaker M U. Radiation status in the marine world. Cham: Springer, 2025: 1-29.
[62] Schmitz Jr W J. On the interbasin-scale thermohaline circulation[J]. Reviews of Geophysics, 1995, 33(2): 151-173.
[63] 周天军,张学洪,王绍武. 大洋温盐环流与气候变率的关系[J]. 科学通报,2000,45(4):421-425.

Zhou Tianjun, Zhang Xuehong, Wang Shaowu. The relationship between the thermohaline circulation and North Atlantic Oscillation [J]. Chinese Science Bulletin, 2000, 45(4): 421-425.
[64] Rahmstorf S. Thermohaline ocean circulation[M]//Elias S A. Encyclopedia of quaternary sciences. Amsterdam: Elsevier, 2006: 1-10.
[65] Carlson A E. The younger dryas climate event[M]//Elias S A. The encyclopedia of quaternary science. Amsterdam: Elsevier, 2013: 126-134.
[66] Wang L, Jiang W Y, Jiang D B, et al. Prolonged heavy snowfall during the Younger Dryas[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(24): 13748-713762.
[67] Wu Z H, Li M C, Qu L P, et al. Metagenomic insights into microbial adaptation to the salinity gradient of a typical short residence-time estuary[J]. Microbiome, 2024, 12(1): 115.
[68] Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations[J]. FEMS Microbiology Reviews, 2018, 42(3): 353-375.
[69] Martijn J, Schön M E, Lind A E, et al. Hikarchaeia demonstrate an intermediate stage in the methanogen-to-halophile transition[J]. Nature Communications, 2020, 11(1): 5490.
[70] 马爱军,崔文晓,刘志峰,等. 广盐性鱼类渗透压适应性与生理可塑性机制研究[J]. 海洋与湖沼,2018,49(6):1308-1317.

Ma Aijun, Cui Wenxiao, Liu Zhifeng, et al. Study on mechanisms of osmotic oressure adaptability and physiological plasticity on euryhaline[J]. Oceanologia et Limnologia Sinica, 2018, 49(6): 1308-1317.
[71] Hauton C. Effects of salinity as a stressor to aquatic invertebrates[M]//Solan M, Whiteley N. Stressors in the marine environment: Physiological and ecological responses; societal implications. Oxford: Oxford University Press, 2016: 3-24.
[72] Smyth K, Elliott M. Effects of changing salinity on the ecology of the marine environment[M]//Solan M, Whiteley N. Stressors in the marine environment: Physiological and ecological responses; societal implications. Oxford: Oxford University Press, 2016: 161-174.
[73] Telesh I V, Khlebovich V V. Principal processes within the estuarine salinity gradient: A review[J]. Marine Pollution Bulletin, 2010, 61(4/5/6): 149-155.
[74] Vidal-Durà A, Burke I T, Mortimer R J G, et al. Diversity patterns of benthic bacterial communities along the salinity continuum of the Humber estuary (UK)[J]. Aquatic Microbial Ecology, 2018, 81(3): 277-291.
[75] Remane A. Die Brackwasserfauna: Mit besonderer Berücksichtigung der Ostsee[J]. Verhandlungen der Deutschen Zoologischen Gesellszchaft, 1934, 36: 34-74.
[76] Catling D C, Glein C R, Zahnle K J, et al. Why O2 is required by complex life on habitable planets and the concept of planetary "oxygenation time"[J]. Astrobiology, 2005, 5(3): 415-438.
[77] 张志飞,梁悦,刘璠,等. 寒武纪生命大爆发新解与地球海洋动物生态系统建立[J]. 古生物学报,2023,62(4):463-515.

Zhang Zhifei, Liang yue, Liu Fan, et al. New perspectives on Cambrian Explosion: Construction of the first animal consumer-driven marine ecosystem on Earth[J]. Acta Palaeontologica Sinica, 2023, 62(4): 463-515.
[78] 朱茂炎,赵方臣,殷宗军,等. 中国的寒武纪大爆发研究:进展与展望[J]. 中国科学:地球科学,2019,49(10):1455-1490.

Zhu Maoyan, Zhao Fangchen, Yin Zongjun, et al. The Cambrian Explosion: Advances and perspectives from China[J]. Science China Earth Sciences, 2019, 49(10): 1455-1490.
[79] 张兴亮. 寒武纪大爆发的过去、现在与未来[J]. 古生物学报,2021,60(1):10-24.

Zhang Xingliang. Cambrian Explosion: Past, present, and future[J]. Acta Palaeontologica Sinica, 2021, 60(1): 10-24.
[80] Smith M P, Harper D A T. Causes of the Cambrian Explosion[J]. Science, 2013, 341(6152): 1355-1356.
[81] 张兴亮,舒德干. 寒武纪大爆发的因果关系[J]. 中国科学:地球科学,2014,44(6):1155-1170.

Zhang Xingliang, Shu Degan. Causes and consequences of the Cambrian Explosion[J]. Science China Earth Sciences, 2014, 44(6): 1155-1170.
[82] Goldschmidt V M, Peters C. Zur Geochemie des Bors: Nachr. Gesellch. Naturwissensch[J]. Gottingen, Math Phys Klasse III, 1932, 25: 528-545.
[83] Frederickson A F, Reynolds Jr R C. Geochemical method for determining paleosalinity[J]. Clays and Clay Minerals, 1959, 8(1): 203-213.
[84] Hingston F J. Reactions between boron and clays[J]. Australian Journal of Soil Research, 1964, 2(1): 83-95.
[85] Porrenga D H. Influence of grinding and heating of layer silicates on boron sorption[J]. Geochimica et Cosmochimica Acta, 1967, 31(3): 309-312.
[86] Retallack G. Boron paleosalinity proxy for deeply buried Paleozoic and Ediacaran fossils[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 540: 109536.
[87] Orians K J, Bruland K W. The marine geochemistry of dissolved gallium: A comparison with dissolved aluminum[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2955-2962.
[88] McAlister J, Orians K. Calculation of river-seawater endmembers and differential trace metal scavenging in the Columbia River plume[J]. Estuarine, Coastal and Shelf Science, 2012, 99: 31-41.
[89] Chen Z Y, Chen Z L, Zhang W G. Quaternary stratigraphy and trace-element indices of the Yangtze Delta, eastern China, with special reference to marine transgressions[J]. Quaternary Research, 1997, 47(2): 181-191.
[90] Potter P E, Shimp N F, Witters J. Trace elements in marine and fresh-water argillaceous sediments[J]. Geochimica et Cosmochimica Acta, 1963, 27(6): 669-694.
[91] 蓝先洪,马道修,徐明广,等. 珠江三角洲若干地球化学标志及指相意义[J]. 海洋地质与第四纪地质,1987,7(1):39-49.

Lan Xianhong, Ma Daoxiu, Xu Mingguang, et al. Some geochemical indicators of the Pearl Rriver Delta and their facies signficance[J]. Marine Geology Quaternary Geology, 1987, 7(1): 39-49.
[92] 钱利军,陈洪德,林良彪,等. 四川盆地西缘地区中侏罗统沙溪庙组地球化学特征及其环境意义[J]. 沉积学报,2012,30(6):1061-1071.

Qian Lijun, Chen Hongde, Lin Liangbiao, et al. Geochemical characteristics and environmental implications of Middle Jurassic Shaximiao Formation, western margin of Sichuan Basin[J]. Acta Sedimentologica Sinica, 2012, 30(6): 1061-1071.
[93] 王益友,吴萍. 江浙海岸带沉积物的地球化学标志[J]. 同济大学学报,1983(4):79-87.

Wang Yiyou, Wu Ping. Geochemical criteria of sediments in the coastal area of Jiangsu and Zhejiang provinces[J]. Journal of Tongji University (Natural Science), 1983(4): 79-87.
[94] 赵一阳,鄢明才. 中国浅海沉积物化学元素丰度[J]. 中国科学,1993,23(10):1084-1090.

Zhao Yiyang, Yan Mingcai. Chemical elements abundance in shallow marine sediments of China[J]. Science in China, 1993, 23(10): 1084-1090.
[95] Crowe S A, Paris G, Katsev S, et al. Sulfate was a trace constituent of Archean seawater[J]. Science, 2014, 346(6210): 735-739.
[96] Simmons E C. Rubidium: Element and geochemistry[M]//Marshall C P, Fairbridge R W. Encyclopedia of geochemistry. Dordrecht: Springer, 1998: 555-556.
[97] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific Publications, 1985: 1-312.
[98] Doyle D A, Cabral J M, Pfuetzner R A, et al. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity[J]. Science, 1998, 280(5360): 69-77.
[99] Scheffler K, Hoernes S, Schwark L. Global changes during Carboniferous–Permian glaciation of Gondwana: Linking polar and equatorial climate evolution by geochemical proxies[J]. Geology, 2003, 31(7): 605-608.
[100] Ye C C, Yang Y B, Fang X M, et al. Late Eocene clay boron-derived paleosalinity in the Qaidam Basin and its implications for regional tectonics and climate[J]. Sedimentary Geology, 2016, 346: 49-59.
[101] Fedo C M, Wayne Nesbitt H, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924.
[102] Harriss R C, Adams J A S. Geochemical and mineralogical studies on the weathering of granitic rocks[J]. American Journal of Science, 1966, 264(2): 146-173.
[103] Scheffler K, Buehmann D, Schwark L. Analysis of late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies – Response to climate evolution and sedimentary environment[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1/2): 184-203.
[104] Tasch P, Gafford E L. Paleosalinity of permian nonmarine deposits in antarctica[J]. Science, 1968, 160(3833): 1221-1222.
[105] 张翔,田景春,陈洪德,等. 鄂尔多斯盆地西部上二叠统石千峰组沉积环境地球化学表征[J]. 地球科学与环境学报,2008,30(2):139-143.

Zhang Xiang, Tian Jingchun, Chen Hongde, et al. Geochemistry evidence of sedimentary environment of Upper Permian Shiqianfeng Formation, western Ordos Basin[J]. Journal of Earth Sciences and Environment, 2008, 30(2): 139-143.
[106] Guber A L. Sedimentary phosphate method for estimating paleosalinities: A paleontological assumption[J]. Science, 1969, 166(3906): 744-746.
[107] Müller G. Sedimentary phosphate method for estimating paleosalinities: Limited applicability[J]. Science, 1969, 163(3869): 812-813.
[108] Rucker J B, Valentine J W. Salinity response of trace element concentration in Crassostrea virginica [J]. Nature, 1961, 190(4781): 1099-1100.
[109] Harriss R C, Pilkey O H. Temperature and salinity control of the concentration of skeletal Na, Mn, and Fe in Dendraster excentricus [J]. Pacific Science, 1966, 20(2): 235-238.
[110] Gordon C M, Carr R A, Larson R E. The influence of environmental factors on the sodium and manganese content of barnacle shells[J]. Limnology and Oceanography, 1970, 15(3): 461-466.
[111] Geerken E, de Nooijer L J, van Dijk I, et al. Impact of salinity on element incorporation in two benthic foraminiferal species with contrasting magnesium contents[J]. Biogeosciences, 2018, 15(7): 2205-2218.
[112] Allen K A, Hönisch B, Eggins S M, et al. Trace element proxies for surface ocean conditions: A synthesis of culture calibrations with planktic foraminifera[J]. Geochimica et Cosmochimica Acta, 2016, 193: 197-221.
[113] Mezger E M, de Nooijer L J, Boer W, et al. Salinity controls on Na incorporation in Red Sea planktonic foraminifera[J]. Paleoceanography, 2016, 31(12): 1562-1582.
[114] Bertlich J, Nürnberg D, Hathorne E C, et al. Salinity control on Na incorporation into calcite tests of the planktonic foraminifera Trilobatus sacculifer – evidence from culture experiments and surface sediments[J]. Biogeosciences, 2018, 15(20): 5991-6018.
[115] Watkins C S, Schmidt M W, Hertzberg J E. Calibrating Trilobatus sacculifer Na/Ca ratios from atlantic core-tops as a proxy for sea surface salinity[J]. Paleoceanography and Paleoclimatology, 2021, 36(10): e2021PA004277.
[116] Hauzer H, Evans D, Müller W, et al. Salinity effect on trace element incorporation in cultured shells of the large benthic foraminifer Operculina ammonoides [J]. Paleoceanography and Paleoclimatology, 2021, 36(6): e2021PA004218.
[117] Zhou X L, Rosenthal Y, Haynes L, et al. Planktic foraminiferal Na/Ca: A potential proxy for seawater calcium concentration[J]. Geochimica et Cosmochimica Acta, 2021, 305: 306-322.
[118] Craig H, Gordon L I. Deuterium and oxygen 18 variations in the ocean and marine atmosphere, stable isotopes in oceanographic studies and paleotemperatures[M]. Pisa: Spoleto, 1965: 9-130.
[119] Shackleton N. Oxygen isotope analyses and pleistocene temperatures re-assessed[J]. Nature, 1967, 215(5096): 15-17.
[120] Jaffrés J B D, Shields G A, Wallmann K. The oxygen isotope evolution of seawater: A critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years[J]. Earth-Science Reviews, 2007, 83(1/2): 83-122.
[121] Duplessy J C, Labeyrie L, Anne J L, et al. Surface salinity reconstruction of the North Atlantic Ocean during the LGM[J]. Oceanologica Acta, 1991, 14(4): 311-324.
[122] Stott L, Cannariato K, Thunell R, et al. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch[J]. Nature, 2004, 431(7004): 56-59.
[123] Leech P J, Lynch-Stieglitz J, Zhang R. Western Pacific thermocline structure and the Pacific marine Intertropical Convergence Zone during the Last Glacial Maximum[J]. Earth and Planetary Science Letters, 2013, 363: 133-143.
[124] Epstein S, Buchsbaum R, Lowenstam H A, et al. Revised carbonate-water isotopic temperature scale[J]. Geological Society of America Bulletin, 1953, 64(11): 1315-1326.
[125] Waelbroeck C, Mulitza S, Spero H, et al. A global compilation of Late Holocene planktonic foraminiferal δ 18O: Relationship between surface water temperature and δ 18O[J]. Quaternary Science Reviews, 2005, 24(7/8/9): 853-868.
[126] Dekens P S, Lea D W, Pak D K, et al. Core top calibration of Mg/Ca in tropical foraminifera: Refining paleotemperature estimation[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(4): 1-29.
[127] Lear C H, Rosenthal Y, Slowey N. Benthic foraminiferal Mg/Ca-paleothermometry: A revised core-top calibration[J]. Geochimica et Cosmochimica Acta, 2002, 66(19): 3375-3387.
[128] Elderfield H, Ganssen G. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios[J]. Nature, 2000, 405(6785): 442-445.
[129] Shackleton N J. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: Isotopic changes in the ocean during the last glacial[C]//Proceedings of Colloques Internationaux du C.N.R.S. Paris, 1974: 203-209.
[130] Bemis B E, Spero H J, Bijma J, et al. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations[J]. Paleoceanography, 1998, 13(2): 150-160.
[131] Duplessy J C, Labeyrie L, Arnold M, et al. Changes in surface salinity of the North Atlantic Ocean during the last deglaciation[J]. Nature, 1992, 358(6386): 485-488.
[132] Waelbroeck C, Labeyrie L, Michel E, et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records[J]. Quaternary Science Reviews, 2002, 21(1/2/3): 295-305.
[133] Bintanja R, van de Wal R S W, Oerlemans J. Modelled atmospheric temperatures and global sea levels over the past million years[J]. Nature, 2005, 437(7055): 125-128.
[134] Rohling E J, Bigg G R. Paleosalinity and δ18O: A critical assessment[J]. Journal of Geophysical Research: Oceans, 1998, 103(C1): 1307-1318.
[135] Holloway M D, Sime L C, Singarayer J S, et al. Reconstructing paleosalinity from δ 18O: Coupled model simulations of the Last Glacial Maximum, Last Interglacial and Late Holocene[J]. Quaternary Science Reviews, 2016, 131: 350-364.
[136] Ma X L, Yan H, Fei H B, et al. A high-resolution δ18O record of modern Tridacna gigas bivalve and its paleoenvironmental implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 554: 109800.
[137] 陈越,王跃,党皓文,等. 南海东北部末次冰盛期以来的水文气候变化[J]. 第四纪研究,2021,41(4):1031-1043.

Chen Yue, Wang Yue, Dang Haowen, et al. Hydroclimatic changes in the northeastern South China Sea since the Last Glacial Maximum[J]. Quaternary Sciences, 2021, 41(4): 1031-1043.
[138] Singh A, Jani R A, Ramesh R. Spatiotemporal variations of the δ18O–salinity relation in the northern Indian Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(11): 1422-1431.
[139] Rohling E J. Paleosalinity: Confidence limits and future applications[J]. Marine Geology, 2000, 163(1/2/3/4): 1-11.
[140] Mehta S, Singh A, Thirumalai K. Uncertainty in palaeosalinity estimates from foraminiferal geochemical records in the northern Indian Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 569: 110326.
[141] Xiao J, Xiao Y K, Jin Z D, et al. Boron isotope variations and its geochemical application in nature[J]. Australian Journal of Earth Sciences, 2013, 60(4): 431-447.
[142] Foster G L, Marschall H R, Palmer M R. Advances in isotope geochemistry[M]. Göttingen: Springer, 2018: 1-289.
[143] Mao H R, Liu C Q, Zhao Z Q. Source and evolution of dissolved boron in rivers: Insights from boron isotope signatures of end-members and model of boron isotopes during weathering processes[J]. Earth-Science Reviews, 2019, 190: 439-459.
[144] 夏芝广,胡忠亚,刘传,等. 蒸发岩非传统稳定同位素研究综述[J]. 地学前缘,2021,28(6):29-45.

Xia Zhiguang, Hu Zhongya, Liu Chuan, et al. Non-traditional stable isotopes in evaporite system: A research review[J]. Earth Science Frontiers, 2021, 28(6): 29-45.
[145] Foster G L, von Strandmann P A E P, Rae J W B. Boron and magnesium isotopic composition of seawater[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(8): Q08015.
[146] Vengosh A, Starinsky A, Kolodny Y, et al. Boron isotope variations during fractional evaporation of sea water: New constraints on the marine vs. nonmarine debate[J]. Geology, 1992, 20(9): 799-802.
[147] Zhang X Y, Ma H Z, Ma Y Q, et al. Origin of the Late Cretaceous potash-bearing evaporites in the Vientiane Basin of Laos: δ11B evidence from borates[J]. Journal of Asian Earth Sciences, 2013, 62: 812-818.
[148] Wang L C, Shen L J, Liu C L, et al. Formation of marine sylvite on the Khorat Plateau, Southeast Asia: Evidence from B isotopes, trace elements, and petrography[J]. Sedimentary Geology, 2023, 444: 106315.
[149] Ishikawa T, Nakamura E. Boron isotope systematics of marine sediments[J]. Earth and Planetary Science Letters, 1993, 117(3/4): 567-580.
[150] Vengosh A, Kolodny Y, Starinsky A, et al. Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates[J]. Geochimica et Cosmochimica Acta, 1991, 55(10): 2901-2910.
[151] Sanchez-Valle C, Reynard B, Daniel I, et al. Boron isotopic fractionation between minerals and fluids: New insights from in situ high pressure-high temperature vibrational spectroscopic data[J]. Geochimica et Cosmochimica Acta, 2005, 69(17): 4301-4313.
[152] Rugebregt M J, Nurhati I S. Preliminary study of ocean acidification: Relationship of pH, temperature, and salinity in Ohoililir, Southeast Maluku[J]. IOP Conference Series: Earth and Environmental Science, 2020, 618: 012004.
[153] Lécuyer C, Gillet P, Robert F. The hydrogen isotope composition of seawater and the global water cycle[J]. Chemical Ge-ology, 1998, 145(3/4): 249-261.
[154] Zhao J J, An C B, Longo W M, et al. Occurrence of extended chain length C41 and C42 alkenones in hypersaline lakes[J]. Organic Geochemistry, 2014, 75: 48-53.
[155] Rontani J F, Prahl F G, Volkman J K. Re-examination of the double bond positions in alkenones and derivatives: Biosynthetic implications[J]. Journal of Phycology, 2006, 42(4): 800-813.
[156] Volkman J K, Eglinton G, Corner E D S, et al. Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi [J]. Phytochemistry, 1980, 19(12): 2619-2622.
[157] Theroux S, D'Andrea W J, Toney J, et al. Phylogenetic diversity and evolutionary relatedness of alkenone-producing haptophyte algae in lakes: Implications for continental paleotemperature reconstructions[J]. Earth and Planetary Science Letters, 2010, 300(3/4): 311-320.
[158] Zheng Y S, Heng P, Conte M H, et al. Systematic chemotaxonomic profiling and novel paleotemperature indices based on alkenones and alkenoates: Potential for disentangling mixed species input[J]. Organic Geochemistry, 2019, 128: 26-41.
[159] 邢磊,杨欣欣,肖睿. 长链烯酮的组合特征及其对盐度和母源种属指示意义的研究进展[J]. 中国海洋大学学报,2019,49(10):79-87.

Xing Lei, Yang Xinxin, Xiao Rui. Progress of compositions and indications of long-chain alkenones[J]. Periodical of Ocean University of China, 2019, 49(10): 79-87.
[160] van der Meer M T J, Baas M, Rijpstra W I C, et al. Hydrogen isotopic compositions of long-chain alkenones record fresh-water flooding of the Eastern Mediterranean at the onset of sapropel deposition[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 594-600.
[161] van der Meer M T J, Sangiorgi F, Baas M, et al. Molecular isotopic and dinoflagellate evidence for Late Holocene freshening of the Black Sea[J]. Earth and Planetary Science Letters, 2008, 267(3/4): 426-434.
[162] Häggi C, Chiessi C M, Schefuß E. Testing the D / H ratio of alkenones and palmitic acid as salinity proxies in the Amazon Plume[J]. Biogeosciences, 2015, 12(23): 7239-7249.
[163] Mitsunaga B A, Novak J, Zhao X M, et al. Alkenone δ2H values:A viable seawater isotope proxy? New core-top δ2HC37∶3 and δ2HC37:2 data suggest inter-alkenone and alkenone-water hydrogen isotope fractionation are independent of temperature and salinity[J]. Geochimica et Cosmochimica Acta, 2022, 339: 139-156.
[164] van der Meer M T J, Benthien A, French K L, et al. Large effect of irradiance on hydrogen isotope fractionation of alkenones in Emiliania huxleyi [J]. Geochimica et Cosmochimica Acta, 2015, 160: 16-24.
[165] M’boule D, Chivall D, Sinke-Schoen D, et al. Salinity dependent hydrogen isotope fractionation in alkenones produced by coastal and open ocean haptophyte algae[J]. Geochimica et Cosmochimica Acta, 2014, 130: 126-135.
[166] Weiss G M, Roepert A, Middelburg J J, et al. Hydrogen isotope fractionation response to salinity and alkalinity in a calcifying strain of Emiliania huxleyi [J]. Organic Geochemistry, 2019, 134: 62-65.
[167] van der Meer M T J, Benthien A, Bijma J, et al. Alkenone distribution impacts the hydrogen isotopic composition of the C37:2 and C37∶3 alkan-2-ones in Emiliania huxleyi [J]. Geochimica et Cosmochimica Acta, 2013, 111: 162-166.
[168] Gould J, Kienast M, Dowd M, et al. An open-ocean assessment of alkenone δD as a paleo-salinity proxy[J]. Geochimica et Cosmochimica Acta, 2019, 246: 478-497.
[169] Weiss G M, Schouten S, Sinninghe Damsté J S, et al. Constraining the application of hydrogen isotopic composition of alkenones as a salinity proxy using marine surface sediments[J]. Geochimica et Cosmochimica Acta, 2019, 250: 34-48.
[170] Koç N, Jansen E, Haflidason H. Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian seas through the last 14 ka based on diatoms[J]. Quaternary Science Reviews, 1993, 12(2): 115-140.
[171] Kaiser J, van der Meer M T J, Arz H W. Long-chain alkenones in Baltic Sea surface sediments: New insights[J]. Organic Geochemistry, 2017, 112: 93-104.
[172] Bendle J, Rosell-Melé A, Ziveri P. Variability of unusual distributions of alkenones in the surface waters of the Nordic seas[J]. Paleoceanography, 2005, 20(2): PA2001.
[173] Mercer J L, Zhao M X, Colman S M. Seasonal variations of alkenones and UK37 in the Chesapeake Bay water column[J]. Estuarine, Coastal and Shelf Science, 2005, 63(4): 675-682.
[174] Chu G Q, Sun Q, Li S Q, et al. Long-chain alkenone distributions and temperature dependence in lacustrine surface sediments from China[J]. Geochimica et Cosmochimica Acta, 2005, 69(21): 4985-5003.
[175] Chivall D, M’Boule D, Sinke-Schoen D, et al. Impact of salinity and growth phase on alkenone distributions in coastal haptophytes[J]. Organic Geochemistry, 2014, 67: 31-34.
[176] Liao S A, Huang Y S. Group 2i Isochrysidales flourishes at exceedingly low growth temperatures (0 to 6°C)[J]. Organic Geochemistry, 2022, 174: 104512.
[177] Zhang H R, Huang Y S, Wijker R, et al. Iberian Margin surface ocean cooling led freshening during Marine Isotope Stage 6 abrupt cooling events[J]. Nature Communications, 2023, 14(1): 5390.
[178] Bates S T, Berg-Lyons D, Caporaso J G, et al. Examining the global distribution of dominant archaeal populations in soil[J]. The ISME Journal, 2011, 5(5): 908-917.
[179] Biddle J F, Lipp J S, Lever M A, et al. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(10): 3846-3851.
[180] Woese C R, Fox G E. Phylogenetic structure of the prokaryotic domain: The primary kingdoms[J]. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(11): 5088-5090.
[181] Woese C R, Magrum L J, Fox G E. Archaebacteria[J]. Journal of Molecular Evolution, 1978, 11(3): 245-252.
[182] 王欢业. 土壤和湖泊醚类化合物GDGTs的现代过程调查及古环境应用[D]. 西安:中国科学院研究生院(地球环境研究所),2015:1-161.

Wang Huanye. Distribution of glycerol dialkyl glycerol tetraether lipids in soils and lakes: Implications for paleoenvironmental proxies[D]. Xi’an: Institute of Earth Environment, CAS, 2015: 1-161.
[183] Gambacorta A, Gliozzi A, de Rosa M. Archaeal lipids and their biotechnological applications[J]. World Journal of Microbiology and Biotechnology, 1995, 11(1): 115-131.
[184] Sinninghe Damsté J S, Schouten S, Hopmans E C, et al. Crenarchaeol: The characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota[J]. Journal of Lipid Research, 2002, 43(10): 1641-1651.
[185] Kates M. Structural analysis of phospholipids and glycolipids in extremely halophilic archaebacteria[J]. Journal of Microbiological Methods, 1996, 25(2): 113-128.
[186] Teixidor P, Grimait J O, Pueyo J J, et al. Isopranylglycerol diethers in non-alkaline evaporitic environments[J]. Geochimica et Cosmochimica Acta, 1993, 57(18): 4479-4489.
[187] Casamayor E O, Massana R, Benlloch S, et al. Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern[J]. Environmental Microbiology, 2002, 4(6): 338-348.
[188] Ryan W B F. Modeling the magnitude and timing of evaporative drawdown during the Messinian salinity crisis[J]. Stratigraphy, 2008, 5(3/4): 227-244.
[189] Meilijson A, Hilgen F, Sepúlveda J, et al. Chronology with a pinch of salt: Integrated stratigraphy of Messinian evaporites in the deep Eastern Mediterranean reveals long-lasting halite deposition during Atlantic connectivity[J]. Earth-Science Reviews, 2019, 194: 374-398.
[190] Li C, Shi W, Cheng M, et al. The redox structure of Ediacaran and early Cambrian oceans and its controls[J]. Science Bulletin, 2020, 65(24): 2141-2149.
[191] Canfield D E, Poulton S W, Knoll A H, et al. Ferruginous conditions dominated later neoproterozoic deep-water chemistry[J]. Science, 2008, 321(5891): 949-952.
[192] Poulton S W, Canfield D E. Ferruginous conditions: A dominant feature of the ocean through Earth's history[J]. Elements, 2011, 7(2): 107-112.
[193] Kitano Y, Okumura M, Idogaki M. Incorporation of sodium, chloride and sulfate with calcium carbonate[J]. Geochemical Journal, 1975, 9(2): 75-84.
[194] Ishikawa M, Ichikuni M. Uptake of sodium and potassium by calcite[J]. Chemical Geology, 1984, 42(1/2/3/4): 137-146.