[1] Meiburg E, Kneller B. Turbidity currents and their deposits[J]. Annual Review of Fluid Mechanics, 2010, 42: 135-156.
[2] Wells M G, Dorrell R M. Turbulence processes within turbidity currents[J]. Annual Review of Fluid Mechanics, 2021, 53: 59-83.
[3] Cossu R, Forrest A L, Roop H A, et al. Seasonal variability in turbidity currents in Lake Ohau, New Zealand, and their influence on sedimentation[J]. Marine and Freshwater Research, 2016, 67(11): 1725-1739.
[4] Talling P J, Cartigny M J B, Pope E, et al. Detailed monitoring reveals the nature of submarine turbidity currents[J]. Nature Reviews Earth & Environment, 2023, 4(9): 642-658.
[5] 温志新,王建君,王兆明,等. 世界深水油气勘探形势分析与思考[J]. 石油勘探与开发,2023,50(5):924-936.

Wen Zhixin, Wang Jianjun, Wang Zhaoming, et al. Analysis of the world deepwater oil and gas exploration situation[J]. Petroleum Exploration and Development, 2023, 50(5): 924-936.
[6] Piper D J W, Cochonat P, Morrison M L. The sequence of events around the epicentre of the 1929 Grand Banks earthquake: Initiation of debris flows and turbidity current inferred from sidescan sonar[J]. Sedimentology, 1999, 46(1): 79-97.
[7] Carter L, Gavey R, Talling P J, et al. Insights into submarine geohazards from breaks in subsea telecommunication cables[J]. Oceanography, 2014, 27(2): 58-67.
[8] Galy V, France-Lanord C, Beyssac O, et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system[J]. Nature, 2007, 450(7168): 407-410.
[9] Talling P J, Hage S, Baker M L, et al. The global turbidity current pump and its implications for organic carbon cycling[J]. Annual Review of Marine Science, 2024, 16: 105-133.
[10] Jutzeler M, Manga M, White J D L, et al. Submarine deposits from pumiceous pyroclastic density currents traveling over water: An outstanding example from offshore Montserrat (IODP 340)[J]. Geological Society of America Bulletin, 2017, 129(3/4): 392-414.
[11] Mountjoy J J, Howarth J D, Orpin A R, et al. Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins[J]. Science Advances, 2018, 4(3): eaar3748.
[12] 杨剑萍,黄雅睿,卢惠东,等. 东营凹陷营11北地区沙三中亚段重力流触发机制[J]. 中国石油大学学报(自然科学版),2021,45(4):1-11.

Yang Jianping, Huang Yarui, Lu Huidong, et al. Triggering mechanism of gravity flow sandbodies of Middle Es3 member in the north of well Ying 11, Dongying Depression[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(4): 1-11.
[13] Puig P, Ogston A S, Mullenbach B L, et al. Storm-induced sediment gravity flows at the head of the Eel submarine canyon, northern California margin[J]. Journal of Geophysical Research: Oceans, 2004, 109(C3): C03019.
[14] Sequeiros O E, Bolla Pittaluga M, Frascati A, et al. How typhoons trigger turbidity currents in submarine canyons[J]. Scientific Reports, 2019, 9(1): 9220.
[15] Mulder T, Migeon S, Savoye B, et al. Twentieth century floods recorded in the deep Mediterranean sediments[J]. Geology, 2001, 29(11): 1011-1014.
[16] Xian B Z, Wang J H, Gong C L, et al. Classification and sedimentary characteristics of lacustrine hyperpycnal channels: Triassic outcrops in the south Ordos Basin, central China[J]. Sedimentary Geology, 2018, 368: 68-82.
[17] Chen P, Xian B Z, Li M J, et al. A giant lacustrine flood-related turbidite system in the Triassic Ordos Basin, China: Sedimentary processes and depositional architecture[J]. Sedimentology, 2021, 68(7): 3279-3306.
[18] Heijnen M S, Mienis F, Gates A R, et al. Challenging the highstand-dormant paradigm for land-detached submarine canyons[J]. Nature Communications, 2022, 13(1): 3448.
[19] Hage S, Cartigny M J B, Sumner E J, et al. Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes[J]. Geophysical Research Letters, 2019, 46(20): 11310-11320.
[20] Forel F A. Le ravin sous-lacustre du Rhône dans le lac Léman[J]. Bulletin de La Société Vaudoise des Sciences Naturelles, 1888, 23: 85-107.
[21] Middleton G V, Hampton M A. Sediment gravity flows: Mechanics of flow and deposition[M]//Middleton G V, Bouma A H. Turbidites and deep water sedimentation. Anaheim: SEPM, 1973: 1-38.
[22] Lowe D R. Sediment gravity flows: II, Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research, 1982, 52(1): 279-297.
[23] Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003.
[24] Baas J H, Best J L. Turbulence modulation in clay-rich sediment-laden flows and some implications for sediment deposition[J]. Journal of Sedimentary Research, 2002, 72(3): 336-340.
[25] Walker R G. Deep-water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps[J]. AAPG Bulletin, 1978, 62(6): 932-966.
[26] Shanmugam G. 50 years of the turbidite paradigm (1950s-1990s): Deep-water processes and facies models-a critical perspective[J]. Marine and Petroleum Geology, 2000, 17(2): 285-342.
[27] 杨仁超,李作福,张学才,等. 异重流沉积研究进展与展望[J]. 沉积学报,2023,41(6):1917-1933.

Yang Renchao, Li Zuofu, Zhang Xuecai, et al. Advances and perspectives in the study of hyperpycnal flow deposition[J]. Acta Sedimentologica Sinica, 2023, 41(6): 1917-1933.
[28] 陈轩,陶鑫,覃建华,等. 准噶尔盆地吉木萨尔凹陷及周缘二叠系芦草沟组异重流沉积[J]. 石油与天然气地质,2023,44(6):1530-1545.

Chen Xuan, Tao Xin, Qin Jianhua, et al. Hyperpycnal flow deposits of the Permian Lucaogou Formation in the Jimusaer Sag and its peripheries, Junggar Basin[J]. Oil & Gas Geology, 2023, 44(6): 1530-1545.
[29] 刘海宁,韩宏伟,操应长,等. 东营凹陷东坡古近系沙三中亚段异重流沉积特征与沉积模式[J]. 中国石油大学学报(自然科学版),2022,46(1):13-22.

Liu Haining, Han Hongwei, Cao Yingchang, et al. Sedimentary characteristics and depositional model of hyperpycnites in the middle of the third member of Paleogene Shahejie Formation in the east slope of Dongying Sag[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(1): 13-22.
[30] Liu J P, Xian B Z, Wang J H, et al. Sedimentary architecture of a sub-lacustrine debris fan: Eocene Dongying Depression, Bohai Bay Basin, east China[J]. Sedimentary Geology, 2017, 362: 66-82.
[31] 吴千然,鲜本忠,高先志,等. 强制湖退期湖底扇沉积构型的多样性与砂体分布特征:以渤海湾盆地东营凹陷沙三段中亚段为例[J]. 石油勘探与开发,2023,50(4):782-794.

Wu Qianran, Xian Benzhong, Gao Xianzhi, et al. Diversity of depositional architecture and sandbody distribution of sublacustrine fans during forced regression: A case study of Paleogene middle Sha 3 member in Dongying Sag, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2023, 50(4): 782-794.
[32] Ilstad T, Elverhøi A, Issler D, et al. Subaqueous debris flow behaviour and its dependence on the sand/clay ratio: A laboratory study using particle tracking[J]. Marine Geology, 2004, 213(1/2/3/4): 415-438.
[33] Plenderleith G E, Dodd T J H, McCarthy D J. The effect of breached relay ramp structures on deep-lacustrine sedimentary systems[J]. Basin Research, 2022, 34(3): 1191-1219.
[34] 葛智渊,许鸿翔. 浊流对复杂构造地貌的水动力和沉积响应[J]. 古地理学报,2023,25(5):1090-1117.

Ge Zhiyuan, Xu Hongxiang. Hydraulic and sedimentary responses of turbidity current to structurally-controlled topography[J]. Journal of Palaeogeography, 2023, 25(5): 1090-1117.
[35] Tian R H, Xian B Z, Wu Q R, et al. Turbidite system controlled by fault interaction and linkage on a slope belt of rift Basin: Zhanhua Depression, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2023, 155: 106377.
[36] 侯云超,樊太亮,李一凡,等. 盐构造与深水重力流的相互作用及响应:以墨西哥湾Sureste盆地中新统为例[J]. 沉积学报,2022,40(1):22-33.

Hou Yunchao, Fan Tailiang, Li Yifan, et al. Interactions and responses between salt structures and deep water gravity flow: A case study from the Miocene strata in the Sureste Basin, Gulf of Mexico[J]. Acta Sedimentologica Sinica, 2022, 40(1): 22-33.
[37] Liu J P, Xian B Z, Tan X F, et al. Depositional process and dispersal pattern of a faulted margin hyperpycnal system: The Eocene Dongying Depression, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2022, 135: 105405.
[38] Niu X B, Yang T, Cao Y C, et al. Characteristics and Formation mechanisms of gravity-flow deposits in a lacustrine Depression Basin: Examples from the Late Triassic Chang 7 oil member of the Yanchang Formation, Ordos Basin, Central China[J]. Marine and Petroleum Geology, 2023, 148: 106048.
[39] Yang T, Cao Y C, Liu K Y, et al. Gravity-flow deposits caused by different initiation processes in a deep-lake system[J]. AAPG Bulletin, 2020, 104(7): 1463-1499.
[40] Wu Q R, Xian B Z, Gao X Z, et al. Differences of sedimentary triggers and depositional architecture of lacustrine turbidites from normal regression to forced regression: Eocene Dongying Depression, Bohai Bay Basin, East China[J]. Sedimentary Geology, 2022, 439: 106222.
[41] Wang Z, Xian B Z, Liu J Y, et al. Large-scale turbidite systems of a semi-enclosed shelf sea: The Upper Miocene of eastern Yinggehai Basin, South China Sea[J]. Sedimentary Geology, 2021, 425: 106006.
[42] Yang T, Cao Y C, Liu H N. Highstand sublacustrine fans: The role of a sudden increase in sediment supply[J]. Basin Research, 2023, 35(4): 1486-1508.
[43] 陈亮,季汉成,张靓,等. 裂陷盆地重力流沉积对基准面变化的响应:以乌里雅斯太南洼腾一下亚段为例[J]. 沉积学报,2016,34(3):487-496.

Chen Liang, Ji Hancheng, Zhang Liang, et al. Responses of gravity flow deposits to base-level variation in Rift Basin using a case study of Lower Teng1 Formation in South Wuliyasitai Sag[J]. Acta Sedimentologica Sinica, 2016, 34(3): 487-496.
[44] 王林,吕奇奇,张严,等. 鄂尔多斯盆地西南部长7油层组深水重力流沉积岩相特征及分布模式[J]. 沉积学报,2025,43(1):154-168.

Wang Lin, Qiqi Lü, Zhang Yan, et al. Lithofacies characteristics and distribution patterns of deep water gravity flow sedimentation in the Chang 7 Oil Formation in the Southwest Ordos Basin[J]. Acta Sedimentologica Sinica, 2025, 43(1): 154-168.
[45] Gilbert G K, Murphy E C. The transportation of débris by running water[M]. Washington: Department of the Interior, United States Geological Survey, 1914: 1-263.
[46] Kuenen P H, Migliorini C I. Turbidity currents as a cause of graded bedding[J]. The Journal of Geology, 1950, 58(2): 91-127.
[47] Kuenen P H. Estimated size of the Grand Banks turbidity current [J]. American Journal of Science, 1952,250(12): 874-884.
[48] Ellison T H, Turner J S. Turbulent entrainment in stratified flows[J]. Journal of Fluid Mechanics, 1959,6(3): 423-448.
[49] Simons D B, Richardson E V. Forms of bed roughness in alluvial channels[J]. Transactions of the American Society of Civil Engineers, 1963,128(1): 284-302.
[50] Middleton G V. Experiments on density and turbidity currents: III. Deposition of sediment[J]. Canadian Journal of Earth Sciences, 1967, 4(3): 475-505.
[51] Chu F H, Pilkey W D, Pilkey O H. An analytical study of turbidity current steady flow[J]. Marine Geology, 1979, 33(3/4): 205-220.
[52] Southard J B, Mackintosh M E. Experimental test of autosuspension[J]. Earth Surface Processes and Landforms, 1981, 6(2): 103-111.
[53] Parker G, Fukushima Y, Pantin H M. Self-accelerating turbidity currents[J]. Journal of Fluid Mechanics, 1986, 171: 145-181.
[54] Postma G, Nemec W, Kleinspehn K L. Large floating clasts in turbidites: A mechanism for their emplacement[J]. Sedimentary Geology, 1988, 58(1): 47-61.
[55] Kneller B, Edwards D, McCaffrey W, et al. Oblique reflection of turbidity currents[J]. Geology, 1991, 19(3): 250-252.
[56] Dade W B, Huppert H E. A box model for non-entraining, suspension-driven gravity surges on horizontal surfaces[J]. Sedimentology, 1995, 42(3): 453-470.
[57] Mohrig D, Ellis C, Parker G, et al. Hydroplaning of subaqueous debris flows[J]. GSA Bulletin, 1998, 110(3): 387-394.
[58] Marr J G, Harff P A, Shanmugam G, et al. Experiments on subaqueous sandy gravity flows: The role of clay and water content in flow dynamics and depositional structures[J]. GSA Bulletin, 2001, 113(11): 1377-1386.
[59] 刘忠保,龚文平,王新海,等. 洪水型浊流砂体形成及分布的沉积模拟实验[J]. 石油与天然气地质,2008,29(1):26-30,37.

Liu Zhongbao, Gong Wenping, Wang Xinhai, et al. Sedimentation simulation tests on Formation and distribution of flood turbidity sandbodies[J]. Oil & Gas Geology, 2008, 29(1): 26-30, 37.
[60] 鄢继华,陈世悦,姜在兴. 三角洲前缘浊积体成因及分布规律研究[J]. 石油实验地质,2008,30(1):16-19,25.

Yan Jihua, Chen Shiyue, Jiang Zaixing. Genesis and distribution regularity of the turbidite bodies in the delta front[J]. Petroleum Geology & Experiment, 2008, 30(1): 16-19, 25.
[61] Lamb M P, McElroy B, Kopriva B, et al. Linking river-flood dynamics to hyperpycnal-plume deposits: Experiments, theory, and geological implications[J]. Geological Society of America Bulletin, 2010, 122(9/10): 1389-1400.
[62] Cantero M I, Cantelli A, Pirmez C, et al. Emplacement of massive turbidites linked to extinction of turbulence in turbidity currents[J]. Nature Geoscience, 2015, 5(1):42-45.
[63] Cartigny M J B, Ventra D, Postma G, et al. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: New insights from flume experiments[J]. Sedimentology, 2014, 61(3): 712-748.
[64] de Leeuw J, Eggenhuisen J T, Cartigny M J B. Morphodynamics of submarine channel inception revealed by new experimental approach[J]. Nature Communications, 2016, 7: 10886.
[65] Ge Z Y, Nemec W, Gawthorpe R L, et al. Response of unconfined turbidity current to normal-fault topography[J]. Sedimentology, 2017, 64(4): 932-959.
[66] Pohl F, Eggenhuisen J T, Tilston M, et al. New flow relaxation mechanism explains scour fields at the end of submarine channels[J]. Nature Communications, 2019, 10(1): 4425.
[67] Miramontes E, Eggenhuisen J T, Jacinto R S, et al. Channel-levee evolution in combined contour current-turbidity current flows from flume-tank experiments[J]. Geology, 2020, 48(4): 353-357.
[68] Salinas J S, Balachandar S, Shringarpure M, et al. Anatomy of subcritical submarine flows with a lutocline and an intermediate destruction layer[J]. Nature Communications, 2021, 12(1): 1649.
[69] Wahab A, Hoyal D C, Shringarpure M, et al. A dimensionless framework for predicting submarine fan morphology[J]. Nature Communications, 2022, 13(1): 7563.
[70] 夏长淮. 沉积模拟技术在油气田勘探开发中的应用:以东濮凹陷白庙气田为例[D]. 广州:中国科学院广州地球化学研究所,2003:15-22.

Xia Changhuai. Application of sedimentation simulation techniques in oil and gas field exploration: A case study about Baimiao gas field in Dongpu Depression[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2003: 15-22.
[71] Kane I A, McCaffrey W D, Peakall J. Controls on sinuosity evolution within submarine channels[J]. Geology, 2008, 36(4): 287-290.
[72] Straub K M, Mohrig D, Mcelroy B, et al. Interactions between turbidity currents and topography in aggrading sinuous submarine channels: A laboratory study[J]. GSA Bulletin, 2008, 120(3-4):368-385.
[73] Rowland J C, Hilley G E, Fildani A. A Test of Initiation of Submarine Leveed Channels by Deposition Alone[J]. Journal of Sedimentary Research, 2010, 80(8):710-727.
[74] Cartigny M J B, Eggenhuisen J T, Hansen E W M, et al. Concentration-dependent flow stratification in experimental high-density turbidity currents and their relevance to turbidite facies models[J]. Journal of Sedimentary Research, 2013, 83(11):4840.
[75] Eggenhuisen J T, McCaffrey W D. The vertical turbulence structure of experimental turbidity currents encountering basal obstructions: Implications for vertical suspended sediment distribution in non-equilibrium currents[J]. Sedimentology, 2012, 59(3): 1101-1120.
[76] Baas J H, Van Kesteren W, Postma G. Deposits of depletive high-density turbidity currents: A flume analogue of bed geometry, structure and texture[J]. Sedimentology, 2004, 51(5): 1053-1088.
[77] XU J P. Normalized velocity profiles of field-measured turbidity currents[J]. Geology, 2010, 38(6):563-566.
[78] Kneller B, Buckee C. The structure and fluid mechanics of turbidity currents: A review of some recent studies and their geolo-gical implications[J]. Sedimentology, 2000, 47(Suppl.1): 62-94.
[79] Kostic S, Parker G, Marr J G. Role of turbidity currents in setting the foreset slope of clinoforms prograding into standing fresh water[J]. Journal of Sedimentary Research, 2002, 72(3): 353-362.
[80] Pohl F, Eggenhuisen J T, Cartigny M J B,et al. The influence of a slope break on turbidite deposits: An experimental investigation[J]. Marine Geology, 2020, 424: 106160.
[81] Wilkin J, Cuthbertson A, Dawson S, et al. The response of high density turbidity currents and their deposits to an abrupt channel termination at a slope break: Implications for channel-lobe transition zones[J]. Sedimentology, 2023, 70(4): 1164-1194.
[82] Sequeiros O E. Estimating turbidity current conditions from channel morphology: A Froude number approach[J]. Journal of Geophysical Research: Oceans, 2012, 117(C4): C04003.
[83] Sequeiros O E, Cantelli A, Viparelli E, et al. Modeling turbidity currents with nonuniform sediment and reverse buoyancy[J]. Water Resources Research, 2009, 45(6): W06408.
[84] Schieber J, Southard J, Thaisen K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763.
[85] Elerian M, van Rhee C, Helmons R. Experimental and numerical modelling of deep-sea-mining-generated turbidity currents[J]. Minerals, 2022, 12(5): 558.
[86] Nomura S, De Cesare G, Furuichi M, et al. Quasi-stationary flow structure in turbidity currents[J]. International Journal of Sediment Research, 2020, 35(6): 659-665.
[87] Ono K, Naruse H, Yao Q F, et al. Multiple scours and upward fining caused by hydraulic jumps: Implications for the recognition of cyclic steps in the deepwater stratigraphic record[J]. Journal of Sedimentary Research, 2023, 93(4): 243-255.
[88] de Vet M G W, Fernández R, Baas J H, et al. Streamwise turbulence modulation in non-uniform open-channel clay suspension flows[J]. Journal of Geophysical Research: Earth Surface, 2023, 128(8): e2022JF006781.
[89] Parker G, Garcia M, Fukushima Y, et al. Experiments on turbidity currents over an erodible bed[J]. Journal of Hydraulic Research, 1987, 25(1): 123-147.
[90] Garcia M, Parker G. Experiments on hydraulic jumps in turbidity currents near a canyon-fan transition[J]. Science, 1989, 245(4916): 393-396.
[91] Garcia M, Parker G. Experiments on the entrainment of sediment into suspension by a dense bottom current[J]. Journal of Geophysical Research: Oceans, 1993, 98(C3): 4793-4807.
[92] Cantelli A, Johnson S, White J D L, et al. Sediment sorting in the deposits of turbidity currents created by experimental modeling of explosive subaqueous eruptions[J]. The Journal of Geology, 2008, 116(1): 76-93.
[93] 张春生,刘忠保,施冬,等. 涌流型浊流形成及发展的实验模拟[J]. 沉积学报,2002,20(1):25-29.

Zhang Chunsheng, Liu Zhongbao, Shi Dong, et al. The simulation experiment of surge-type turbidity current formation and development[J]. Acta Sedimentologica Sinica, 2002, 20(1): 25-29.
[94] 刘忠保,龚文平,张春生,等. 沉积物重力流砂体形成及分布的沉积模拟试验研究[J]. 石油天然气学报(江汉石油学院学报),2006,38(3):20-22.

Liu Zhongbao, Gong Wenping, Zhang Chunsheng, et al. Experimental study on sedimentary modeling on the formation and distribution of gravity flow sandbody[J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2006, 38(3): 20-22.
[95] 鄢继华,陈世悦,姜在兴,等. 断陷湖盆震浊积岩成因模拟实验[J]. 古地理学报,2007,9(3):277-282.

Yan Jihua, Chen Shiyue, Jiang Zaixing, et al. Simulating experiment on genesis of seismo-turbidites in rift lacustrine Basin[J]. Journal of Palaeogeography, 2007, 9(3): 277-282.
[96] Baas J H, Best J L, Peakall J, et al. A phase diagram for turbulent, transitional, and laminar clay suspension flows[J]. Journal of Sedimentary Research, 2009, 79(4): 162-183.
[97] Baas J H, Best J L, Peakall J. Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud–sand) sediment flows[J]. Sedimentology, 2011, 58(7): 1953-1987.
[98] Baker M L, Baas J H. Mixed sand–mud bedforms produced by transient turbulent flows in the fringe of submarine fans: Indicators of flow transformation[J]. Sedimentology, 2020, 67(5): 2645-2671.
[99] 袁琳. 蒙脱石的胀缩机理及改性技术研究[D]. 长沙:长沙理工大学,2007:5-7.

Yuan Lin. The swelling and shrinking mechanism and modification of montmorillonite[D]. Changsha: Changsha University of Science & Technology, 2007: 5-7.
[100] Normark W R. Fan valleys, channels, and depositional lobes on modern submarine fans: Characters for recognition of sandy turbidite environments[J]. AAPG Bulletin, 1978, 62(6): 912-931.
[101] Hubbard S M, Covault J A, Fildani A, et al. Sediment transfer and deposition in slope channels: Deciphering the record of enigmatic deep-sea processes from outcrop[J]. GSA Bulletin, 2014, 126(5/6): 857-871.
[102] Gong C L, Steel R J, Qi K, et al. Deep-water channel morphologies, architectures, and population densities in relation to stacking trajectories and climate states[J]. GSA Bulletin, 2021, 133(1/2): 287-306.
[103] Mayall M, Jones E, Casey M. Turbidite channel reservoirs: Key elements in facies prediction and effective development[J]. Marine and Petroleum Geology, 2006, 23(8): 821-841.
[104] Keevil G M, Peakall J, Best J L, et al. Flow structure in sinuous submarine channels: Velocity and turbulence structure of an experimental submarine channel[J]. Marine Geology, 2006, 229(3/4): 241-257.
[105] Wynn R B, Kenyon N H, Masson D G, et al. Characterization and recognition of deep-water channel-lobe transition zones[J]. AAPG Bulletin, 2002, 86(8): 1441-1462.
[106] Macdonald H A, Wynn R B, Huvenne V A I, et al. New insights into the morphology, fill, and remarkable longevity (>0.2 m.y.) of modern deep-water erosional scours along the northeast Atlantic margin[J]. Geosphere, 2011, 7(4): 845-867.
[107] Dorrell R M, Peakall J, Sumner E J, et al. Flow dynamics and mixing processes in hydraulic jump arrays: Implications for channel-lobe transition zones[J]. Marine Geology, 2016, 381: 181-193.
[108] Carvajal C, Paull C K, Caress D W, et al. Unraveling the channel-lobe transition zone with high-resolution AUV bathymetry: Navy Fan, offshore Baja California, Mexico[J]. Journal of Sedimentary Research, 2017, 87(10): 1049-1059.
[109] Komar P D. Hydraulic jumps in turbidity currents[J]. GSA Bulletin, 1971, 82(6): 1477-1488.
[110] Lu Y T, Luan X W, Shi B Q, et al. Migrated hybrid turbidite-contourite channel-lobe complex of the Late Eocene Rovuma Basin, East Africa[J]. Acta Oceanologica Sinica, 2021, 40(2): 81-94.
[111] Chen Y H, Yao G S, Wang X F, et al. Flow processes of the interaction between turbidity flows and bottom currents in sinuous unidirectionally migrating channels: An example from the Oligocene channels in the Rovuma Basin, offshore Mozambique[J]. Sedimentary Geology, 2020, 404: 105680.
[112] 李华,何明薇,邱春光,等. 深水等深流与重力流交互作用沉积(2000—2022年)研究进展[J]. 沉积学报,2023,41(1):18-36.

Li Hua, He Mingwei, Qiu Chunguang, et al. Research processes on deep-water interaction between contour current and gravity flow deposits, 2000 to 2022[J]. Acta Sedimentologica Sinica, 2023, 41(1): 18-36.
[113] Fedele J J, Bayliss N. Hydraulic controls on turbidity channel and slope gullies lateral migration induced by contour currents[M]//Abubakar A, Hakami A. Second international meeting for applied geoscience & energy. Houston: Society of Exploration Geophysicists, 2022: 2460-2463.
[114] Hage S, Cartigny M J B, Clare M A, et al. How to recognize crescentic bedforms formed by supercritical turbidity currents in the geologic record: Insights from active submarine channels[J]. Geology, 2018, 46(6): 563-566.
[115] Postma G, Cartigny M J B. Supercritical and subcritical turbidity currents and their deposits: A synthesis[J]. Geology, 2014, 42(11): 987-990.
[116] Smith D P, Kvitek R, Iampietro P J, et al. Twenty-nine months of geomorphic change in Upper Monterey Canyon (2002-2005)[J]. Marine Geology, 2007, 236(1/2): 79-94.
[117] Fildani A, Normark W R, Kostic S, et al. Channel Formation by flow stripping: Large-scale scour features along the Monterey East Channel and their relation to sediment waves[J]. Sedimentology, 2006, 53(6): 1265-1287.
[118] Covault J A, Kostic S, Paull C K, et al. Submarine channel initiation, filling and maintenance from sea-floor geomorphology and morphodynamic modelling of cyclic steps[J]. Sedimentology, 2014, 61(4): 1031-1054.
[119] Zhong G F, Cartigny M J B, Kuang Z G, et al. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea[J]. GSA Bulletin, 2015, 127(5/6): 804-824.
[120] Symons W O, Sumner E J, Talling P J, et al. Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows[J]. Marine Geology, 2016, 371: 130-148.
[121] 林承焰,陈柄屹,任丽华,等. 沉积数值模拟研究现状及实例[J]. 地质学报,2023,97(8):2756-2773.

Lin Chengyan, Chen Bingyi, Ren Lihua, et al. A review of depositional numerical simulation and a case study[J]. Acta Geologica Sinica, 2023, 97(8): 2756-2773.
[122] Gladstone C, Woods A W. On the application of box models to particle-driven gravity currents[J]. Journal of Fluid Mechanics, 2000, 416: 187-195.
[123] Launder B E. Turbulence modelling for CFD. By D. C. WILCOX. DCW Industries Inc., 1993. 460pp. $75.[J]. Journal of Fluid Mechanics, 1995, 289: 406-407
[124] Meiburg E, Radhakrishnan S, Nasr-Azadani M. Modeling gravity and turbidity currents: Computational approaches and challenges[J]. Applied Mechanics Reviews, 2015, 67(4): 040802.
[125] Yeh T H, Cantero M, Cantelli A, et al. Turbidity current with a roof: Success and failure of RANS modeling for turbidity currents under strongly stratified conditions[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(3): 1975-1998.
[126] Stevens R J A M, Wilczek M, Meneveau C. Large-eddy simulation study of the logarithmic law for second- and higher-order moments in turbulent wall-bounded flow[J]. Journal of Fluid Mechanics, 2014, 757: 888-907.
[127] 王星星,王英民,高胜美,等. 深水重力流模拟研究进展及对海洋油气开发的启示[J]. 中国矿业大学学报,2018,47(3):588-602.

Wang Xingxing, Wang Yingmin, Gao Shengmei, et al. Advancements of the deep-water gravity flow simulations and their implications for exploitation of marine petroleum[J]. Journal of China University of Mining & Technology, 2018, 47(3): 588-602.
[128] Goodarzi D, Sookhak Lari K, Khavasi E, et al. Large eddy simulation of turbidity currents in a narrow channel with different obstacle configurations[J]. Scientific Reports, 2020, 10(1): 12814.
[129] Dai A, Wu C S. High-resolution simulations of cylindrical gravity currents in a rotating system[J]. Journal of Fluid Mechanics, 2016, 806: 71-101.
[130] Howlett D M, Ge Z Y, Nemec W, et al. Response of unconfined turbidity current to deep-water fold and thrust belt topography: Orthogonal incidence on solitary and segmented folds[J]. Sedimentology, 2019, 66(6): 2425-2454.
[131] Abd El-Gawad S, Cantelli A, Pirmez C, et al. Three-dimensional numerical simulation of turbidity currents in a submarine channel on the seafloor of the Niger Delta slope[J]. Journal of Geophysical Research: Oceans, 2012, 117(C5): C05026.
[132] Cai Z R, Naruse H. Inverse analysis of experimental scale turbidity currents using deep learning neural networks[J]. Journal of Geophysical Research: Earth Surface, 2021, 126(8): e2021JF006276.
[133] Naruse H, Nakao K. Inverse modeling of turbidity currents using an artificial neural network approach: Verification for field application[J]. Earth Surface Dynamics, 2021, 9(5): 1091-1109.
[134] Baghalian S, Ghodsian M. Experimental analysis and prediction of velocity profiles of turbidity current in a channel with abrupt slope using artificial neural network[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39(11): 4503-4517.
[135] Guo X S, Luo Q Y, Stoesser T, et al. Evolution of high-density submarine turbidity current and its interaction with a pair of parallel suspended pipes[J]. Physics of Fluids, 2023, 35(8): 086608.
[136] Tang X Q, Koh C G, Luo M. Numerical simulation of turbidity currents using consistent particle method[J]. Advances in Water Resources, 2023, 180: 104536.
[137] Strauss M, Glinsky M E. Turbidity current flow over an erodible obstacle and phases of sediment wave generation[J]. Journal of Geophysical Research: Oceans, 2012, 117(C6): C06007.
[138] Teles V, Chauveau B, Joseph P, et al. CATS: A process-based model for turbulent turbidite systems at the reservoir scale[J]. Comptes Rendus Geoscience, 2016, 348(7): 489-498.
[139] Tian D M, Jiang T, Wang H, et al. Flow dynamics and sedimentation at a turbidity channel confluence in the Yinggehai Basin, northwestern South China sea[J]. Geoenergy Science and Engineering, 2023, 227: 211927.
[140] Basani R, Janocko M, Cartigny M J B, et al. Mass FLOW-3DTM as a simulation tool for turbidity currents: Some preliminary results[M]//Martinius A W, Ravnas R, Howell J A, et al. From depositional systems to sedimentary successions on the Norwegian continental margin. Chichester: International Association of Sedimentologists, 2014: 587-608.
[141] Boysan F, Weber R, Swithenbank J, et al. Modeling coal-fired cyclone combustors[J]. Combustion and Flame, 1986, 63(1-2):73-86.
[142] Georgoulas A N, Angelidis P B, Panagiotidis T G, et al. 3D numerical modelling of turbidity currents[J]. Environmental Fluid Mechanics, 2010, 10(6): 603-635.
[143] Porcile G, Enrile F, Besio G, et al. Hydrostatic vs. non-hydrostatic modelling of density currents developing two dimensionally on steep and mild slopes[J]. Applied Ocean Research, 2022, 121: 103085.
[144] Porcile G, Bolla Pittaluga M, Frascati A, et al. Modelling the air-sea-land interactions responsible for the direct trigger of turbidity currents by tropical cyclones[J]. Applied Ocean Research, 2023, 137: 103602.
[145] Griffiths C M, Dyt C, Paraschivoiu E, et al. Sedsim in hydrocarbon exploration[M]//Merriam D F, Davis J C. Geologic modeling and simulation: Sedimentary systems. New York: Springer, 2001: 71-97.
[146] Huang H, Imran J, Pirmez C, et al. The critical densimetric Froude number of subaqueous gravity currents can be non-unity or non-existent[J]. Journal of Sedimentary Research, 2009, 79(7): 479-485.
[147] Zhao L, Ouillon R, Vowinckel B, et al. Transition of a hyperpycnal flow into a saline turbidity current due to differential diffusivities[J]. Geophysical Research Letters, 2018, 45(21): 11875-11884.
[148] Picot M, Droz L, Marsset T, et al. Controls on turbidite sedimentation: Insights from a quantitative approach of submarine channel and lobe architecture (Late Quaternary Congo Fan)[J]. Marine and Petroleum Geology, 2016, 72: 423-446.
[149] Sweet M L, Gaillot G T, Jouet G, et al. Sediment routing from shelf to Basin floor in the Quaternary Golo System of eastern Corsica, France, western Mediterranean Sea[J]. GSA Bulletin, 2020, 132(5/6): 1217-1234.
[150] 年廷凯,沈月强,郑德凤,等. 海底滑坡链式灾害研究进展[J]. 工程地质学报,2021,29(6):1657-1675.

Tingkai Nian, Shen Yueqiang, Zheng Defeng, et al. Research advances on the chain disasters of submarine landslides[J]. Journal of Engineering Geology, 2021, 29(6): 1657-1675.
[151] Dott R H. Dynamics of subaqueous gravity depositional processes[J]. AAPG Bulletin, 1963, 47(1): 104-128 DottRH. Dynamics of subaqueous gravity depositional processes[J]. AAPG Bulletin, 1963, 47(1): 104-128.