[1] 王鸿祯. 地球的节律与大陆动力学的思考[J]. 地学前缘,1997,4(3/4):1-12.

Wang Hongzhen. Speculations on earth's rhythms and continental dynamics[J]. Earth Science Frontiers, 1997, 4(3/4): 1-12.
[2] Schwarzacher W. Cyclostratigraphy and the Milankovitch theory[M]. London: Elsevier, 1993.
[3] 吴怀春. 旋回地层学研究进展和挑战[C]//2018年中国地球科学联合学术年会论文集(一):专题1:岩石圈构造与大陆动力学、专题2:古地磁学与地球动力学. 北京:中国地球物理学会,2018:37. [

Wu Huaichun. Advances and challenges in cyclostratigraphy[C]//Proceedings of 2018 China geoscience joint annual meeting (1) -- Topic 1: Lithospheric structure and continental dynamics; Topic 2: Paleomagnetism and geodynamics. Beijing: Chinese Geophysical Society, 2018: 37.]
[4] 汪品先,田军,黄恩清,等. 地球系统与演变[M]. 北京:科学出版社,2018.

Wang Pinxian, Tian Jun, Huang Enqing, et al. Earth system and evolution[M]. Beijing: Science Press, 2018.
[5] Milankovitch M. Kanon der erdbestrahlungen und seine anwendung auf das eiszeitenproblem[M]. Belgrade: Royal Serbian Academy, 1941.
[6] 徐道一,韩延本,李国辉,等. 天文地层学的兴起[J]. 地层学杂志,2006,30(4):323-326.

Xu Daoyi, Han Yanben, Li Guohui, et al. The rise of astrostratigraphy[J]. Journal of Stratigraphy, 2006, 30(4): 323-326.
[7] 闫建平,言语,彭军,等. 天文地层学与旋回地层学的关系、研究进展及其意义[J]. 岩性油气藏,2017,29(1):147-156.

Yan Jianping, Yan Yu, Peng Jun, et al. The research progress, significance and relationship of astrostratigraphy with cyclostratigraphy[J]. Lithologic Reservoirs, 2017, 29(1): 147-156.
[8] 吴怀春,张世红,冯庆来,等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学:中国地质大学学报,2011,36(3):409-428.

Wu Huaichun, Zhang Shihong, Feng Qinglai, et al. Theoretical basis, research advancement and prospects of cyclostratigraphy[J]. Earth Science:Journal of China University of Geosciences, 2011, 36(3): 409-428.
[9] Crowley J W, Katz R F, Huybers P, et al. Glacial cycles drive variations in the production of oceanic crust[J]. Science, 2015, 347(6227): 1237-1240.
[10] Hinnov L A, Ogg J G. Cyclostratigraphy and the astronomical time scale[J]. Stratigraphy, 2007, 4(2/3): 239-251.
[11] 马超,王成善,陈曦,等. 藏南晚白垩世旋回地层学研究:以定日贡扎剖面为例[J]. 地学前缘,2009,16(5):134-142.

Ma Chao, Wang Chengshan, Chen Xi, et al. Cyclostratigraphic study of the Upper Cretaceous of southern Tibet, China: A case study of Gongzha section[J]. Earth Science Frontiers, 2009, 16(5): 134-142.
[12] 龚一鸣,徐冉,汤中道,等. 广西上泥盆统轨道旋回地层与牙形石带的数字定年[J]. 中国科学(D辑):地球科学,2004,34(7):635-643.

Gong Yiming, Xu Ran, Tang Zhongdao, et al. The Upper Devonian orbital cyclostratigraphy and numerical dating conodont zones from Guangxi, South China[J]. Science China (Seri. D): Earth Sciences, 2004, 34(7): 635-643.
[13] 黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘,2014,21(2):48-66.

Huang Chunju. The current status of cyclostratigraphy and astrochronology in the Mesozoic[J]. Earth Science Frontiers, 2014, 21(2): 48-66.
[14] 吴怀春,钟阳阳,房强,等. 古生代旋回地层学与天文地质年代表[J]. 矿物岩石地球化学通报,2017,36(5):750-770.

Wu Huaichun, Zhong Yangyang, Fang Qiang, et al. Paleozoic cyclostratigraphy and astronomical time scale[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(5): 750-770.
[15] 马雪莹,邓胜徽,卢远征,等. 华南上奥陶统宝塔组天文年代格架及其地质意义[J]. 地学前缘,2019,26(2):281-291.

Ma Xueying, Deng Shenghui, Lu Yuanzheng, et al. Astrochronology of the Upper Ordovician Pagoda Formation, South China and its geological implications[J]. Earth Science Frontiers, 2019, 26(2): 281-291.
[16] 梅冥相,王龙,李屹尧,等. 湖南桃源瓦尔岗剖面层序地层框架下的寒武系第10阶旋回地层学研究[J]. 地层学杂志,2019,43(2):115-132.

Mei Mingxiang, Wang Long, Li Yiyao, et al. Cyclostratigraphy within the framework of sequence stratigraphy for the stage 10 of the Cambrian Furongian at the Wa'ergang section, Taoyuan county, Hunan province[J]. Journal of Stratigraphy, 2019, 43(2): 115-132.
[17] 石巨业,金之钧,刘全有,等. 基于米兰科维奇理论的湖相细粒沉积岩高频层序定量划分[J]. 石油与天然气地质,2019,40(6):1205-1214.

Shi Juye, Jin Zhijun, Liu Quanyou, et al. Quantitative classification of high-frequency sequences in fine-grained lacustrine sedimentary rocks based on Milankovitch theory[J]. Oil & Gas Geology, 2019, 40(6): 1205-1214.
[18] 程日辉,王国栋,王璞珺. 松辽盆地白垩系泉三段—嫩二段沉积旋回与米兰科维奇周期[J]. 地质学报,2008,82(1):55-64.

Cheng Rihui, Wang Guodong, Wang Pujun. Sedimentary cycles of the Cretaceous Quantou-Nenjiang Formations and Milankovitch cycles of the south hole of the SLCORE-I in the Songliao Basin[J]. Acta Geologica Sinica, 2008, 82(1): 55-64.
[19] 姚益民,徐旭辉,刘翠荣,等. 米氏旋回剥蚀量计算方法在泌阳凹陷的应用[J]. 石油实验地质,2011,33(5):460-467.

Yao Yimin, Xu Xuhui, Liu Cuirong, et al. Calculation of denudation amount with Milankovitch cycle method: A case study in Biyang Sag[J]. Petroleum Geology and Experiment, 2011, 33(5): 460-467.
[20] 范婕,蒋有录,崔小君,等. 恢复不整合剥蚀厚度的旋回分析法[J]. 中国矿业大学学报,2018,47(2):323-331.

Fan Jie, Jiang Youlu, Cui Xiaojun, et al. Unconformable eroded thickness recovery by cycle analysis method[J]. Journal of China University of Mining & Technology, 2018, 47(2): 323-331.
[21] 赵军,曹强,付宪弟,等. 基于米兰科维奇天文旋回恢复地层剥蚀厚度:以松辽盆地X油田青山口组为例[J]. 石油实验地质,2018,40(2):260-267.

Zhao Jun, Cao Qiang, Fu Xiandi, et al. Recovery of denuded strata thickness based on Milankovitch astronomical cycles: A case study of Qingshankou Formation in X oilfield, Songliao Basin[J]. Petroleum Geology and Experiment, 2018, 40(2): 260-267.
[22] Wu H C, Zhang S H, Hinnov L A, et al. Time-calibrated Milankovitch cycles for the Late Permian[J]. Nature Communications, 2013, 4: 2452.
[23] Li M S, Huang C J, Hinnov L, et al. Obliquity-forced climate during the Early Triassic hothouse in China[J]. Geology, 2016, 44(8): 623-626.
[24] Shi J Y, Jin Z J, Liu Q Y, et al. Terrestrial sedimentary responses to astronomically forced climate changes during the Early Paleogene in the Bohai Bay Basin, eastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 502: 1-12.
[25] Boulila S, Brange C, Cruz A M, et al. Astronomical pacing of Late Cretaceous third- and second-order sea-level sequences in the Foz do Amazonas Basin[J]. Marine and Petroleum Geology, 2020, 117: 104382.
[26] Li M S, Hinnov L A, Huang C J, et al. Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing[J]. Nature Communications, 2018, 9(1): 1004.
[27] Fischer A G, D’Argenio B, Silva I P, et al. Cyclostratigraphic approach to earth's history: An introduction[M]//D’Argenio B, Fischer A G, Silva I P, et al. Cyclostratigraphy: Approaches and case histories. Tulsa: SEPM, 2004: 5-13.
[28] Weedon G P. Time-series analysis and cyclostratigraphy[M]. Cambridge: Cambridge University Press, 2003.
[29] 石巨业,金之钧,刘全有,等. 基于米兰科维奇理论的高精度旋回识别与划分:以南图尔盖盆地Ary301井中侏罗统为例[J]. 沉积学报,2017,35(3):436-448.

Shi Juye, Jin Zhijun, Liu Quanyou, et al. Recognition and division of high-resolution sequences based on the Milankovitch theory: A case study from the Middle Jurassic of well Ary301 in the South Turgay Basin[J]. Acta Sedimentologica Sinica, 2017, 35(3): 436-448.
[30] 任传真,褚润健,吴怀春,等. 天津蓟县剖面前寒武系洪水庄组—铁岭组米兰科维奇旋回[J]. 现代地质,2019,33(5):979-989.

Ren Chuanzhen, Chu Runjian, Wu Huaichun, et al. Milankovitch cycles of the Precambrian Hongshuizhuang-Tieling Formations at Jixian section in Tianjin[J]. Geoscience, 2019, 33(5): 979-989.
[31] 杨涵菲. 晚白垩世松辽盆地嫩江组米兰科维奇旋回的识别及其古气候响应[D]. 北京:中国地质大学(北京),2017.

Yang Hanfei. Recognition of Milankovitch cycles in Late Cretaceous Nenjiang Formation from the SongLiao Basin and paleoclimate response[D]. Beijing: China University of Geosciences (Beijing), 2017.
[32] 房强. 晚古生代冰期末期米兰科维奇旋回在华南的记录及环境响应[D]. 北京:中国地质大学(北京),2015.

Fang Qiang. Milankovitch cycles from South China and the environmental responds at the end of the Late Paleozoic Ice Age[D]. Beijing: China University of Geosciences (Beijing), 2015.
[33] Li M S, Huang C J, Ogg J, et al. Paleoclimate proxies for cyclostratigraphy: Comparative analysis using a Lower Triassic marine section in South China[J]. Earth-Science Reviews, 2019, 189: 125-146.
[34] Grygar T M, Mach K, Hron K, et al. Lithological correction of chemical weathering proxies based on K, Rb, and Mg contents for isolation of orbital signals in clastic sedimentary archives[J]. Sedimentary Geology, 2020, 406: 105717.
[35] Ma C, Li M S. Astronomical time scale of the Turonian constrained by multiple paleoclimate proxies[J]. Geoscience Frontiers, 2020, 11(4): 1345-1352.
[36] Meyers S R, Sageman B B. Quantification of deep-time orbital forcing by average spectral misfit[J]. American Journal of Science, 2007, 307(5): 773-792.
[37] Meyers S R, Sageman B B, Arthur M A. Obliquity forcing of organic matter accumulation during Oceanic Anoxic Event 2[J]. Paleoceanography, 2012, 27(3): PA3212.
[38] Li M S, Kump L R, Hinnov L A, et al. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing[J]. Earth and Planetary Science Letters, 2018, 501: 165-179.
[39] Meyers S R. The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization[J]. Paleoceanography, 2015, 30(12): 1625-1640.
[40] Meyers S R. Cyclostratigraphy and the problem of astrochronologic testing[J]. Earth-Science Reviews, 2019, 190: 190-223.
[41] Ocakoğlu F, Açıkalın S, Yılmaz İ Ö, et al. Evidence of orbital forcing in lake-level fluctuations in the Middle Eocene oil shale-bearing lacustrine successions in the Mudurnu-Göynük Basin, NW Anatolia (Turkey)[J]. Journal of Asian Earth Sciences, 2012, 56: 54-71.
[42] Sabatino N, Meyers S R, Voigt S, et al. A new high-resolution carbon-isotope stratigraphy for the Campanian (Bottaccione section): Its implications for global correlation, ocean circulation, and astrochronology[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 489: 29-39.
[43] Sproson A D. Pacing of the latest Ordovician and Silurian carbon cycle by a ~4.5 Myr orbital cycle[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 540: 109543.
[44] Malinverno A, Erba E, Herbert T D. Orbital tuning as an inverse problem: Chronology of the early Aptian oceanic anoxic event 1a (Selli Level) in the Cismon APTICORE[J]. Paleoceanography, 2010, 25(2): PA2203.
[45] 余继峰,乔文彦,赵秀丽,等. 山旺盆地:记录“深时”气候的时间胶囊[J]. 山东科技大学学报(自然科学版),2019,38(5):1-8,20.

Yu Jifeng, Qiao Wenyan, Zhao Xiuli, et al. Shanwang Basin: A time capsule recording the "Deep Time" climate[J]. Journal of Shandong University of Science and Technology (Natural Science), 2019, 38(5): 1-8, 20.
[46] 袁学旭. 基于主成分分析的米兰科维奇旋回识别和应用研究[J]. 华北科技学院学报,2019,16(4):48-56,70.

Yuan Xuexu. Recognition and application research of Milankovitch Cycle based on principal component analysis[J]. Journal of North China Institute of Science and Technology, 2019, 16(4): 48-56, 70.
[47] Zhao K, Du X B, Lu Y C, et al. Are light-dark coupled laminae in lacustrine shale seasonally controlled? A case study using astronomical tuning from 42.2 to 45.4 Ma in the Dongying Depression, Bohai Bay Basin, eastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 528: 35-49.
[48] Wang M, Chen H H, Huang C J, et al. Astronomical forcing and sedimentary noise modeling of lake-level changes in the Paleogene Dongpu Depression of North China[J]. Earth and Planetary Science Letters, 2020, 535: 116116.
[49] 赵宗举,陈轩,潘懋,等. 塔里木盆地塔中—巴楚地区上奥陶统良里塔格组米兰科维奇旋回性沉积记录研究[J]. 地质学报,2010,84(4):518-536.

Zhao Zongju, Chen Xuan, Pan Mao, et al. Milankovitch cycles in the Upper Ordovician Lianglitage Formation in the Tazhong-Bachu area, Tarim Basin[J]. Acta Geologica Sinica, 2010, 84(4): 518-536.
[50] Hinnov L A. Earth’s orbital parameters and cycle stratigraphy[M]//Gradstein F M, Ogg J G, Smith A G. A geologic time scale 2004. Cambridge: Cambridge University Press, 2004: 55-62.
[51] Li M S, Ogg J, Zhang Y, et al. Astronomical tuning of the end-Permian extinction and the Early Triassic Epoch of South China and Germany[J]. Earth and Planetary Science Letters, 2016, 441: 10-25.
[52] Zhang J Y, Pas D, Krijgsman W, et al. Astronomical forcing of the Paleogene coal-bearing hydrocarbon source rocks of the East China Sea Shelf Basin[J]. Sedimentary Geology, 2020, 406: 105715.
[53] Ma C, Meyers S R, Sageman B B. Testing Late Cretaceous astronomical solutions in a 15 million year astrochronologic record from North America[J]. Earth and Planetary Science Letters, 2019, 513: 1-11.
[54] 吴淑玉,刘俊. 北黄海东部坳陷始新统米兰科维奇旋回特征[J]. 地球科学,2015,40(11):1933-1944.

Wu Shuyu, Liu Jun. Characteristics of Milankovitch Cycle in Eocene Formation, eastern Depression of the North Yellow Sea Basin[J]. Earth Science, 2015, 40(11): 1933-1944.
[55] Hinnov L A. Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences[J]. GSA Bulletin, 2013, 125(11/12): 1703-1734.
[56] 陈清华,章凤奇,孙述鹏,等. 模式识别在地层划分中的应用[J]. 石油与天然气地质,2004,25(1):102-105,114.

Chen Qinghua, Zhang Fengqi, Sun Shupeng, et al. Application of pattern recognition in stratigraphic division[J]. Oil & Gas Geology, 2004, 25(1): 102-105, 114.
[57] Thomson D J. Spectrum estimation and harmonic analysis[J]. Proceedings of the IEEE, 1982, 70(9): 1055-1096.
[58] Boulila S, Vahlenkamp M, De Vleeschouwer D, et al. Towards a robust and consistent Middle Eocene astronomical timescale[J]. Earth and Planetary Science Letters, 2018, 486: 94-107.
[59] Peng C, Zou C C, Zhang S X, et al. Astronomically forced variations in multiresolution resistivity logs of Lower Upper Cretaceous (Cenomanian-Coniacian) terrestrial formations from the Songliao Basin, northeastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 555: 109858.
[60] 任月清,张泽. 基于最大熵谱估计的超声检测回波频谱分析[J]. 内蒙古大学学报(自然科学版),2007,38(4):454-457.

Ren Yueqing, Zhang Ze. Spectral analysis on echoes of ultrasonic detection based on the maximum entropy spectrum estimation[J]. Journal of Inner Mongolia University, 2007, 38(4): 454-457.
[61] 江涛,王立贤,孙凯,等. 最大熵频谱属性分析技术在层序地层学中的应用:以伊通盆地鹿乡断陷南部万昌组为例[J]. 勘探技术,2009,14(4):53-56.

Jiang Tao, Wang Lixian, Sun Kai, et al. Application of attribute analysis of maximum entropy spectrum to sequence stratigraphy: A case study of Wanchang Formation in Southern Luxiang fault Depression of Yitong Basin[J]. China Petroleum Exploration, 2009, 14(4): 53-56.
[62] Meyers S R. Seeing red in cyclic stratigraphy: Spectral noise estimation for astrochronology[J]. Paleoceanography, 2012, 27(3): PA3228.
[63] Schulz M, Mudelsee M. REDFIT: Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series[J]. Computers & Geosciences, 2002, 28(3): 421-426.
[64] 杨雪,柳波,张金川,等. 古龙凹陷青一段米兰科维奇旋回识别及其沉积响应[J]. 沉积学报,2019,37(4):661-673.

Yang Xue, Liu Bo, Zhang Jinchuan, et al. Identification of sedimentary responses to the Milankovitch cycles in the K2 qn 1 formation, Gulong Depression[J]. Acta Sedimentologica Sinica, 2019, 37(4): 661-673.
[65] 孙善勇,刘惠民,操应长,等. 湖相深水细粒沉积岩米兰科维奇旋回及其页岩油勘探意义:以东营凹陷牛页1井沙四上亚段为例[J]. 中国矿业大学学报,2017,46(4):846-858.

Sun Shanyong, Liu Huimin, Cao Yingchang, et al. Milankovitch cycle of lacustrine deepwater fine-grained sedimentary rocks and its significance to shale oil: A case study of the upper Es4 member of well NY1 in Dongying Sag[J]. Journal of China University of Mining & Technology, 2017, 46(4): 846-858.
[66] Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.
[67] Zeeden C, Meyers S R, Lourens L J, et al. Testing astronomically tuned age models[J]. Paleoceanography, 2015, 30(4): 369-383.
[68] Hinnov L A. New perspectives on orbitally forced stratigraphy[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 419-475.
[69] Laskar J, Fienga A, Gastineau M, et al. La2010: A new orbital solution for the long-term motion of the Earth[J]. Astronomy & Astrophysics, 2011, 532: A89.
[70] Muller R, MacDonald G J. Ice ages and astronomical causes: Data, spectral analysis and mechanisms[M]. New York: Springer, 2000.
[71] Meyers S R, Sageman B B, Hinnov L A. Integrated quantitative stratigraphy of the Cenomanian-Turonian bridge creek limestone member using evolutive harmonic analysis and stratigraphic modeling[J]. Journal of Sedimentary Research, 2001, 71(4): 628-644.
[72] Kent D V, Olsen P E, Muttoni G. Astrochronostratigraphic polarity time scale (APTS) for the Late Triassic and Early Jurassic from continental sediments and correlation with standard marine stages[J]. Earth-Science Reviews, 2017, 166: 153-180.
[73] Li M S, Zhang Y, Huang C J, et al. Astronomical tuning and magnetostratigraphy of the Upper Triassic Xujiahe Formation of South China and Newark Supergroup of North America: Implications for the Late Triassic time scale[J]. Earth and Planetary Science Letters, 2017, 475: 207-223.
[74] 王家映. 地球物理反演理论[M]. 武汉:中国地质大学出版社,1998.

Wang Jiaying. Geophysical inversion theory[M]. Wuhan: China University of Geosciences Press, 1998.
[75] Meyers S R, Malinverno A. Proterozoic Milankovitch cycles and the history of the solar system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(25): 6363-6368.
[76] Huang H, Gao Y, Jones M M, et al. Astronomical forcing of Middle Permian terrestrial climate recorded in a large paleolake in northwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550: 109735.
[77] Zhang Y, Li M S, Ogg J G, et al. Cycle-calibrated magnetostratigraphy of Middle Carnian from South China: Implications for Late Triassic time scale and termination of the Yangtze Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 436: 135-166.
[78] Chen G, Gang W Z, Tang H Z, et al. Astronomical cycles and variations in sediment accumulation rate of the terrestrial Lower Cretaceous Xiagou Formation from the Jiuquan Basin, NW China[J]. Cretaceous Research, 2020, 109: 104156.
[79] Li M S, Hinnov L, Kump L. Acycle: Time-series analysis software for paleoclimate research and education[J]. Computers & Geosciences, 2019, 127: 12-22.