[1] 远光辉,操应长,贾珍臻,等. 含油气盆地中深层碎屑岩储层异常高孔带研究进展[J]. 天然气地球科学,2015,26(1):28-42.

Yuan Guanghui, Cao Yingchang, Jia Zhenzhen, et al. Research progress on anomalously high porosity zones in deeply buried clastic reservoirs in petroliferous basin[J]. Natural Gas Geoscience, 2015, 26(1): 28-42.
[2] Dutton S P, Loucks R G. Diagenetic controls on evolution of porosity and permeability in Lower Tertiary Wilcox sandstones from shallow to ultradeep (200-6700 m) burial, Gulf of Mexico Basin, U.S.A.[J]. Marine and Petroleum Geology, 2010, 27(1): 69-81.
[3] Lai J, Wang G W, Chai Y, et al. Deep burial diagenesis and reservoir quality evolution of high-temperature, high-pressure sandstones: Examples from Lower Cretaceous Bashijiqike Formation in Keshen area, Kuqa Depression, Tarim Basin of China[J]. AAPG Bulletin, 2017, 101(6): 829-862.
[4] Schmidt V, McDonald D A. Role of secondary porosity in sandstone diagenesis[J]. AAPG Bulletin, 1977, 61(8): 1390-1391.
[5] Schmidt V, McDonald D A. Texture and recognition of secondary porosity in sandstones[M]//Scholle P A, Schluger P R. Aspects of diagenesis. Tulsa: SEPM, 1979: 209-225.
[6] Meshri I D. On the reactivity of carbonic and organic acids and generation of secondary porosity[M]//Gautier D L. Roles of organic matter in sediment diagenesis. Tulsa: SEPM, 1986: 123-128
[7] Kawamura K, Tannenbaum E, Huizinga B J, et al. Volatile organic acids generated from kerogen during laboratory heating[J]. Geochemical Journal, 1986, 20(1): 51-59.
[8] Barth T, Andresen B, Iden K, et al. Modelling source rock production potentials for short-chain organic acids and CO2— a multivariate approach[J]. Organic Geochemistry, 1996, 25(8): 427-438.
[9] 曾溅辉,朱志强,吴琼,等. 烃源岩的有机酸生成及其影响因素的模拟实验研究[J]. 沉积学报,2007,25(6):847-851.

Zeng Jianhui, Zhu Zhiqiang, Wu Qiong, et al. Experimental study on the generation of organic acids from source rocks and its effect factors[J]. Acta Sedimentologica Sinica, 2007, 25(6): 847-851.
[10] Loucks R G, Dutton S P. Insights into deep, onshore Gulf of Mexico Wilcox sandstone pore networks and reservoir quality through the integration of petrographic, porosity and permeability, and mercury injection capillary pressure analyses[J]. AAPG Bulletin, 2019, 103(3): 745-765.
[11] Yuan G H, Cao Y C, Schulz H M, et al. A review of feldspar alteration and its geological significance in sedimentary basins: From shallow aquifers to deep hydrocarbon reservoirs[J]. Earth-Science Reviews, 2019, 191: 114-140.
[12] 苏奥,陈红汉,贺聪,等. 控制储层中异常高孔带发育的成岩作用:以琼东南盆地西部崖城区为例[J]. 中国矿业大学学报,2017,46(2):345-355.

Su Ao, Chen Honghan, He Cong, et al. Digenesis controlling development of abnormal high porosity zones: A case from Yacheng area in the western Qiongdongnan Basin, South China Sea[J]. Journal of China University of Mining & Technology, 2017, 46(2): 345-355.
[13] 远光辉,操应长,杨田,等. 论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力[J]. 地学前缘,2013,20(5):207-219.

Yuan Guanghui, Cao Yingchang, Yang Tian, et al. Porosity enhancement potential through mineral dissolution by organic acids in the diagenetic process of clastic reservoir[J]. Earth Science Frontiers, 2013, 20(5): 207-219.
[14] 钟大康,朱筱敏,张枝焕,等. 东营凹陷古近系砂岩次生孔隙成因与纵向分布规律[J]. 石油勘探与开发,2003,30(6):51-53.

Zhong Dakang, Zhu Xiaomin, Zhang Zhihuan, et al. Origin of secondary porosity of Paleogene sandstone in the Dongying Sag[J]. Petroleum Exploration and Development, 2003, 30(6): 51-53.
[15] 陈传平,梅博文,毛治超. 二元羧酸对硅酸盐矿物溶解的实验初步研究[J]. 矿物岩石,1993,13(1):103-107.

Chen Chuanping, Mei Bowen, Mao Zhichao. The initial experimental study for dissolving silicate mineral by dicarboxylic acid in aqueous systems[J]. Journal of Mineralogy and Petrology, 1993, 13(1): 103-107.
[16] 黄思静,杨俊杰,张文正,等. 不同温度条件下乙酸对长石溶蚀过程的实验研究[J]. 沉积学报,1995,13(1):7-17.

Huang Sijing, Yang Junjie, Zhang Wenzheng, et al. Experimental study of feldspar dissolution by acetic acid at different burial temperatures[J]. Acta Sedimentologica Sinica, 1995, 13(1): 7-17.
[17] 杨俊杰,黄月明,张文正,等. 乙酸对长石砂岩溶蚀作用的实验模拟[J]. 石油勘探与开发,1995,22(4):82-86,113-114.

Yang Junjie, Huang Yueming, Zhang Wenzheng, et al. Experimental approach of dissolution of feldspar sand stone by acetic acid[J]. Petroleum Exploration and Development, 1995, 22(4): 82-86, 113-114.
[18] 向廷生,蔡春芳,付华娥. 不同温度、羧酸溶液中长石溶解模拟实验[J]. 沉积学报,2004,22(4):597-602.

Xiang Tingsheng, Cai Chunfang, Fu Hua’e. Dissolution of microcline by carboxylic acids at different temperatures and complexing reaction of Al anion with carboxylic acid in aqueous solution[J]. Acta Sedimentologica Sinica, 2004, 22(4): 597-602.
[19] 季汉成,徐珍. 深部碎屑岩储层溶蚀作用实验模拟研究[J]. 地质学报,2007,81(2):212-219.

Ji Hancheng, Xu Zhen. Experimental simulation for dissolution in clastic reservoirs of the deep zone[J]. Acta Geologica Sinica, 2007, 81(2): 212-219.
[20] 曾庆鲁,张荣虎,王力宝,等. 库车坳陷白垩系深层致密砂岩储层溶蚀作用实验模拟研究[J]. 沉积学报,2018,36(5):946-956.

Zeng Qinglu, Zhang Ronghu, Wang Libao, et al. Experimental simulation for dissolution of Cretaceous tight sand rocks as deep reservoir in Kuqa Depression[J]. Acta Sedimentologica Sinica, 2018, 36(5): 946-956.
[21] 支东明,唐勇,郑孟林,等. 玛湖凹陷源上砾岩大油区形成分布与勘探实践[J]. 新疆石油地质,2018,39(1):1-8,22.

Zhi Dongming, Tang Yong, Zheng Menglin, et al. Discovery, distribution and exploration practice of large oil provinces of above- source conglomerate in Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 9(1): 1-8, 22.
[22] 肖萌,袁选俊,吴松涛,等. 准噶尔盆地玛湖凹陷百口泉组砾岩储层特征及其主控因素[J]. 地学前缘,2019,26(1):212-224.

Xiao Meng, Yuan Xuanjun, Wu Songtao, et al. Conglomerate reservoir characteristics of and main controlling factors for the Baikouquan Formation, Mahu Sag, Junggar Basin[J]. Earth Science Frontiers, 2019, 26(1): 212-224.
[23] 康逊,胡文瑄,曹剑,等. 钾长石和钠长石差异溶蚀与含烃类流体的关系:以准噶尔盆地艾湖油田百口泉组为例[J]. 石油学报,2016,37(11):1381-1393.

Kang Xun, Hu Wenxuan, Cao Jian, et al. Relationship between hydrocarbon bearing fluid and the differential corrosion of potash feldspar and albite: A case study of Baikouquan Formation in Aihu oilfield, Junggar Basin[J]. Acta Petrolei Sinica, 2016, 37(11): 1381-1393.
[24] 张昌民,尹太举,唐勇,等. 准噶尔盆地西北缘及玛湖凹陷沉积储集层研究进展[J]. 古地理学报,2020,22(1):129-146.

Zhang Changmin, Yin Taijü, Tang Yong, et al. Advances in sedimentological reservoir research in Mahu Sag and northwest margin of Junggar Basin[J]. Journal of Palaeogeography, 2020, 22(1): 129-146.
[25] 单祥,陈能贵,郭华军,等. 基于岩石物理相的砂砾岩储层分类评价:以准噶尔盆地玛131井区块百二段为例[J]. 沉积学报,2016,34(1):149-157.

Shan Xiang, Chen Nenggui, Guo Huajun, et al. Reservoir evaluation of sand-conglomerate reservoir based on peteophysical facies: A case study on Bai 2 reservoir in the Ma131 region, Junggar Basin[J]. Acta Sedimentologica Sinica, 2016, 34(1): 149-157.
[26] 陈波,王子天,康莉,等. 准噶尔盆地玛北地区三叠系百口泉组储层成岩作用及孔隙演化[J]. 吉林大学学报(地球科学版),2016,46(1):23-35.

Chen Bo, Wang Zitian, Kang Li, et al. Diagenesis and pore evolution of Triassic Baikouquan Formation in Mabei region, Junggar Basin[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(1): 23-35.
[27] 何登发,尹成,杜社宽,等. 前陆冲断带构造分段特征:以准噶尔盆地西北缘断裂构造带为例[J]. 地学前缘,2004,11(3):91-101.

He Dengfa, Yin Cheng, Du Shekuan, et al. Characteristics of structural segmentation of foreland thrust belts: A case study of the fault belts in the northwestern margin of Junggar Basin[J]. Earth Science Frontiers, 2004, 11(3): 91-101.
[28] 唐勇,徐洋,瞿建华,等. 玛湖凹陷百口泉组扇三角洲群特征及分布[J]. 新疆石油地质,2014,35(6):628-635.

Tang Yong, Xu Yang, Qu Jianhua, et al. Fan-delta group characteristics and its distribution of the Triassic Baikouquan reservoirs in Mahu Sag of Junggar Basin[J]. Xinjiang Petroleum Geology, 2014, 35(6): 628-635.
[29] 蔡春芳,邱利瑞. 塔里木盆地油田水有机配合物的模拟计算[J]. 新疆石油地质,1998,19(1):33-35,88.

Cai Chunfang, Qiu Lirui. Simulation and calculation of organic complex compound in oilfield water, Tarim Basin[J]. Xinjiang Petroleum Geology, 1998, 19(1): 33-35, 88.
[30] 佘敏,寿建峰,沈安江,等. 埋藏有机酸性流体对白云岩储层溶蚀作用的模拟实验[J]. 中国石油大学学报(自然科学版),2014,38(3):10-17.

She Min, Shou Jianfeng, Shen Anjiang, et al. Experimental simulation of dissolution and alteration of buried organic acid fluid on dolomite reservoir[J]. Journal of China University of Petroleum, 2014, 38(3): 10-17.
[31] 吕成福,陈国俊,张功成,等. 珠江口盆地白云凹陷珠海组碎屑岩储层特征及成因机制[J]. 中南大学学报(自然科学版),2011,42(9):2763-2773.

Chengfu Lü, Chen Guojun, Zhang Gongcheng, et al. Reservoir characteristics of detrital sandstones in Zhuhai Formation of Baiyun Sag, Pearl River Mouth Basin[J]. Journal of Central South University (Science and Technology), 2011, 42(9): 2763-2773.