[1] Ma X L, Jiang H C, Cheng J, et al. Spatiotemporal evolution of Paleogene palynoflora in China and its implication for development of the extensional basins in East China[J]. Review of Palaeobotany and Palynology, 2012, 184: 24-35.
[2] Wang D H, Lu S C, Han S, et al. Eocene prevalence of monsoon-like climate over eastern China reflected by hydrological dynamics[J]. Journal of Asian Earth Sciences, 2013, 62: 776-787.
[3] Sayem A S M, Guo Z T, Wu H B, et al. Sedimentary and geochemical evidence of Eocene climate change in the Xining Basin, northeastern Tibetan Plateau[J]. Science China Earth Sciences, 2018, 61(9): 1292-1305.
[4] Abels H A, Dupont-Nivet G, Xiao G Q, et al. Step-wise change of Asian interior climate preceding the Eocene-Oligocene Transition (EOT)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(3/4): 399-412.
[5] Hoorn C, Straathof J, Abels H A, et al. A Late Eocene palynological record of climate change and Tibetan Plateau uplift (Xining Basin, China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 344-345: 16-38.
[6] Kargaranbafghi F, Neubauer F. Tectonic forcing to global cooling and aridification at the Eocene-Oligocene transition in the Iranian Plateau[J]. Global and Planetary Change, 2018, 171: 248-254.
[7] Liu X D, Yin Z Y. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 183(3/4): 223-245.
[8] Dupont-Nivet G, Krijgsman W, Langereis C G, et al. Tibetan Plateau aridification linked to global cooling at the Eocene-Oligocene transition[J]. Nature, 2007, 445(7128): 635-638.
[9] Zhang Z S, Wang H J, Guo Z T, et al. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 245(3/4): 317-331.
[10] Sun X J, Wang P X. How old is the Asian monsoon system?-Palaeobotanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3/4): 181-222.
[11] 王健. 东营凹陷南部缓坡带薄砂体沉积特征及储层成岩改造模式[D]. 青岛:中国石油大学(华东),2013.

Wang Jian. Sedimentary characteristics and reservoir diagenetic reconstruction model of thin sandbodies of southern gentle slope belt in Dongying Depression[D]. Qingdao: China University of Petroleum (East China), 2013.
[12] Quan C, Liu Y S, Utescher T. Eocene monsoon prevalence over China: A paleobotanical perspective[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 365-366: 302-311.
[13] Quan C, Liu Z H, Utescher T, et al. Revisiting the Paleogene climate pattern of East Asia: A synthetic review[J]. Earth-Science Reviews, 2014, 139: 213-230.
[14] 胡东生. 盐湖地学的研究进展和发展方向[J]. 地球科学进展,1997,12(5):411-415.

Hu Dongsheng. Research progress and developmental direction in the geology of salt lakes[J]. Advance in Earth Sciences, 1997, 12(5): 411-415.
[15] Wang J, Wang Y J, Liu Z C, et al. Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 152(1/2): 37-47.
[16] Wang J, Cao Y C, Liu K Y, et al. Pore fluid evolution, distribution and water-rock interactions of carbonate cements in red-bed sandstone reservoirs in the Dongying Depression, China[J]. Marine and Petroleum Geology, 2016, 72: 279-294.
[17] Wang J, Cao Y C, Liu K Y, et al. Diagenesis and evolution of the Lower Eocene red-bed sandstone reservoirs in the Dongying Depression, China[J]. Marine and Petroleum Geology, 2018, 94: 230-245.
[18] Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6877): 159-163.
[19] Huber M, Goldner A. Eocene monsoons[J]. Journal of Asian Earth Sciences, 2012, 44: 3-23.
[20] Quan C, Liu Y S, Utescher T. Paleogene temperature gradient, seasonal variation and climate evolution of Northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 313-314: 150-161.
[21] Song B W, Zhang K X, Lu J F, et al. The Middle Eocene to early Miocene integrated sedimentary record in the Qaidam Basin and its implications for paleoclimate and early Tibetan Plateau uplift[J]. Canadian Journal of Earth Sciences, 2013, 50(2): 183-196.
[22] Licht A, Van Cappelle M, Abels H A, et al. Asian monsoons in a Late Eocene greenhouse world[J]. Nature, 2014, 513(7519): 501-506.
[23] Quan C, Liu Y S, Utescher T. Paleogene evolution of precipitation in northeastern China supporting the Middle Eocene intensification of the East Asian monsoon[J]. PALAIOS, 2011, 26(11): 743-753.
[24] Guo X W, He S, Liu K Y, et al. Oil generation as the dominant overpressure mechanism in the Cenozoic Dongying Depression, Bohai Bay Basin, China[J]. AAPG Bulletin, 2010, 94(12): 1859-1881.
[25] Lampe C, Song G Q, Cong L Z, et al. Fault control on hydrocarbon migration and accumulation in the Tertiary Dongying Depression, Bohai Basin, China[J]. AAPG Bulletin, 2012, 96(6): 983-1000.
[26] Wang J, Cao Y C, Liu H M, et al. Formation conditions and sedimentary model of over-flooding lake deltas within continental lake basins: An example from the Paleogene in the Jiyang Subbasin, Bohai Bay Basin[J]. Acta Geologica Sinica (English Edition), 2015, 89(1): 270-284.
[27] Liang C, Wu J, Jiang Z X, et al. Sedimentary environmental controls on petrology and organic matter accumulation in the Upper Fourth member of the Shahejie Formation (Paleogene, Dongying Depression, Bohai Bay Basin, China)[J]. International Journal of Coal Geology, 2018, 186: 1-13.
[28] Liu J, Wang J, Cao Y C, et al. Sedimentation in a continental high-frequency oscillatory lake in an arid climatic background: A case study of the Lower Eocene in the Dongying Depression, China[J]. Journal of Earth Science, 2017, 28(4): 628-644.
[29] Nijenhuis I A, Bosch H J, Sinninghe Damsté J S, et al. Organic matter and trace element rich sapropels and black shales: A geochemical comparison[J]. Earth and Planetary Science Letters, 1999, 169(3/4): 277-290.
[30] Hinnov L A. New perspectives on orbitally forced stratigraphy[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 419-475.
[31] Schwarzacher W. Repetitions and cycles in stratigraphy[J]. Earth-Science Reviews, 2000, 50(1/2): 51-75.
[32] Schnyder J, Ruffell A, Deconinck J F, et al. Conjunctive use of spectral gamma-ray logs and clay mineralogy in defining Late Jurassic-Early Cretaceous palaeoclimate change (Dorset, U.K.)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 229(4): 303-320.
[33] Wu H C, Zhang S H, Jiang G Q, et al. Astrochronology of the Early Turonian-Early Campanian terrestrial succession in the Songliao Basin, northeastern China and its implication for Long-Period behavior of the Solar System[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 55-70.
[34] 吴怀春,张世红,冯庆来,等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学:中国地质大学学报,2011,36(3):409-428.

Wu Huaichun, Zhang Shihong, Feng Qinglai, et al. Theoretical basis, research advancement and prospects of cyclostratigraphy[J]. Earth Science: Journal of China University of Geosciences, 2011, 36(3): 409-428.
[35] Hammer Ø, Harper D A T, Ryan P D. PAST: Paleontological statistics software package for education and data analysis[J]. Palaeontologia Electronica, 2001, 4(1): 1-9.
[36] Paulissen W E, Luthi S M. High-frequency cyclicity in a Miocene sequence of the Vienna Basin established from high-resolution logs and robust chronostratigraphic tuning[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 307(1/4): 313-323.
[37] Wu H C, Zhang S H, Jiang G Q, et al. The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications[J]. Earth and Planetary Science Letters, 2009, 278(3/4): 308-323.
[38] Huang C J, Hinnov L, Fischer A G, et al. Astronomical tuning of the Aptian Stage from Italian reference sections[J]. Geology, 2010, 38(10): 899-902.
[39] Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.
[40] Fang Q, Wu H C, Hinnov L A, et al. A record of astronomically forced climate change in a Late Ordovician (Sandbian) deep marine sequence, Ordos Basin, North China[J]. Sedimentary Geology, 2016, 341: 163-174.
[41] 姚益民,徐道一,张海峰,等. 山东东营凹陷新生代天文地层表简介[J]. 地层学杂志,2007,31(增刊2):423-429.

Yao Yimin, Xu Daoyi, Zhang Haifeng, et al. A brief introduction to the Cenozoic astrostratigraphic time scale for the Dongying Depression, Shandong[J]. Journal of Stratigraphy, 2007, 31(Suppl. 2): 423-429.
[42] Schulz M, Mudelsee M. REDFIT: Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series[J]. Computers & Geosciences, 2002, 28(3): 421-426.
[43] Drummond C N, Wilkinson B H, Lohmann K C, et al. Effect of regional topography and hydrology on the lacustrine isotopic record of Miocene paleoclimate in the Rocky Mountains[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1993, 101(1/2): 67-79.
[44] 宋明水. 东营凹陷南斜坡沙四段沉积环境的地球化学特征[J]. 矿物岩石,2005,25(1):67-73.

Song Mingshui. Sedimentary environment geochemistry in the Shasi section of southern ramp, Dongying Depression[J]. Journal of Mineralogy and Petrology, 2005, 25(1): 67-73.
[45] 孙立新,张云,张天福,等. 鄂尔多斯北部侏罗纪延安组、直罗组孢粉化石及其古气候意义[J]. 地学前缘,2017,24(1):32-51.

Sun Lixin, Zhang Yun, Zhang Tianfu, et al. Jurassic sporopollen of Yan’an Formation and Zhiluo Formation in the northeastern Ordos Basin, Inner Mongolia, and its paleoclimatic significance[J]. Earth Science Frontiers, 2017, 24(1): 32-51.
[46] Graham S A, Chamberlain C P, Yue Y J, et al. Stable isotope records of Cenozoic climate and topography, Tibetan Plateau and Tarim Basin[J]. American Journal of Science, 2005, 305(2): 101-118.
[47] Liang C, Jiang Z X, Cao Y C, et al. Sedimentary characteristics and origin of lacustrine organic-rich shales in the salinized Eocene Dongying Depression[J]. GSA Bulletin, 2018, 130(1/2): 154-174.
[48] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
[49] Zachos J C, Dickens G R, Zeebe R E. An Early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature, 2008, 451(7176): 279-283.
[50] Bohaty S M, Zachos J C. Significant southern ocean warming event in the Late Middle Eocene[J]. Geology, 2003, 31(11): 1017-1020.
[51] Zhang R, Jiang D B, Ramstein G, et al. Changes in Tibetan Plateau latitude as an important factor for understanding East Asian climate since the Eocene: A modeling study[J]. Earth and Planetary Science Letters, 2018, 484: 295-308.
[52] Bosboom R E, Dupont-Nivet G, Houben A J P, et al. Late Eocene sea retreat from the Tarim Basin (West China) and concomitant Asian paleoenvironmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(3/4): 385-398.
[53] Wang C S, Zhao X X, Liu Z F, et al. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(13): 4987-4992.
[54] van der Beek P, van Melle J, Guillot S, et al. Eocene Tibetan Plateau remnants preserved in the Northwest Himalaya[J]. Nature Geoscience, 2009, 2(5): 364-368.
[55] Beerling D J, Royer D L. Convergent Cenozoic CO2 history[J]. Nature Geoscience, 2011, 4(7): 418-420.
[56] Miller K G, Kominz M A, Browning J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1293-1298.
[57] Carrapa B, DeCelles P G, Wang X, et al. Tectono-climatic implications of Eocene Paratethys regression in the Tajik Basin of central Asia[J]. Earth and Planetary Science Letters, 2015, 424: 168-178.
[58] Zhang Z S, Flatøy F, Wang H J, et al. Early Eocene Asian climate dominated by desert and steppe with limited monsoons[J]. Journal of Asian Earth Sciences, 2012, 44: 24-35.