[1] 顾家裕,方辉,蒋凌志. 塔里木盆地奥陶系生物礁的发现及其意义[J]. 石油勘探与开发,2001,28(4):1-3.

Gu Jiayu, Fang Hui, Jiang Lingzhi. The significance of Ordovician reef discovery in Tarim Basin[J]. Petroleum Exploration and Development, 2001, 28(4): 1-3.
[2] 翟晓先,俞仁连,何发岐,等. 塔河地区奥陶系一间房组微裂隙颗粒灰岩储集体的发现与勘探意义[J]. 石油实验地质,2002,24(5):387-392.

Zhai Xiaoxian, Yu Renlian, He Faqi, et al. Discovery and exploration significance of microfissure grain limestone reservoirs in the Ordovician Yijianfang Formation of Tahe area[J]. Petroleum Geology & Experiment, 2002, 24(5): 387-392.
[3] 邓小江,梁波,莫耀汉,等. 塔河油田奥陶系一间房组礁滩相储层特征及成因机制新认识[J]. 地质科技情报,2007,26(4):63-69.

Deng Xiaojiang, Liang Bo, Mo Yaohan, et al. A new know of characteristics and genesis of reef and bank facies reservoirs in Ordovician Yijianfang Formation in Tahe oilfield[J]. Geological Science and Technology Information, 2007, 26(4): 63-69.
[4] 郑和荣,刘春燕,吴茂炳,等. 塔里木盆地奥陶系颗粒石灰岩埋藏溶蚀作用[J]. 石油学报,2009,30(1):9-15.

Zheng Herong, Liu Chunyan, Wu Maobing, et al. Burial dissolution of Ordovician granule limestone in Tarim Basin[J]. Acta Petrolei Sinica, 2009, 30(1): 9-15.
[5] Li Y, Hou J G, Li Y Q. Features and classified hierarchical modeling of carbonate fracture-cavity reservoirs[J]. Petroleum Exploration and Development, 2016, 43(4): 655-662.
[6] Tian F, Jin Q, Lu X B, et al. Multi-layered ordovician paleokarst reservoir detection and spatial delineation: A case study in the Tahe oilfield, Tarim Basin, western China[J]. Marine and Petroleum Geology, 2016, 69: 53-73.
[7] 牛永斌,崔胜利,胡亚洲,等. 塔河油田奥陶系生物扰动型储集层的三维重构及启示意义[J]. 古地理学报,2018,20(4):691-702.

Niu Yongbin, Cui Shengli, Hu Yazhou, et al. Three-dimensional reconstruction and their significance of bioturbation-type reservoirs of the Ordovician in Tahe oilfield[J]. Journal of Palaeogeography, 2018, 20(4): 691-702.
[8] 李飞,张萍,王赛英. BP神经网络在计算储层参数中的应用[J]. 中国西部科技,2013,12(1):38-40.

Li Fei, Zhang Ping, Wang Saiying. The application of BP neural network in the calculation of the porosity and permeability[J]. Science and Technology of West China, 2013, 12(1): 38-40.
[9] 魏佳明. 机器学习在储层参数预测中的应用研究[D]. 西安: 西安石油大学,2019:2.

Wei Jiaming. Application research of machine learning in reservoir parameter prediction[D]. Xi'an: Xi'an Shiyou University, 2019: 2.
[10] 李准喆,苏艳龙. 密度测井资料在确定岩层孔隙度上的应用[J]. 地质与资源,2014,23(6):574-576.

Li Zhunzhe, Su Yanlong. Application of density logging data in the calculation of porosity of rock formation[J]. Geology and Resources, 2014, 23(6): 574-576.
[11] 刘开元,贺振华,许艳秋. 碳酸盐岩储层孔隙度预测方法研究及其在南海某区的应用[J]. 石油物探,2014,53(2):232-237.

Liu Kaiyuan, He Zhenhua, Xu Yanqiu. Porosity prediction method research for carbonate reservoir and its application in South China Sea[J]. Geophysical Prospecting for Petroleum, 2014, 53(2): 232-237.
[12] 郭继亮,李宏兵,李明,等. 一种体现孔隙形态影响的四参数孔隙度反演方法[J]. 石油物探,2016,55(4):576-586.

Guo Jiliang, Li Hongbing, Li Ming, et al. Four parameters porosity inversion method representing the effect of pore morphology[J]. Geophysical Prospecting for Petroleum, 2016, 55(4): 576-586.
[13] 史飞洲,王彦春,陈剑光. 碳酸盐岩地层电成像测井孔隙度谱截止值计算方法[J]. 测井技术,2016,40(1):60-64.

Shi Feizhou, Wang Yanchun, Chen Jianguang. Calculation of porosity spectrum threshold of electrical images in carbonate reservoirs[J]. Well Logging Technology, 2016, 40(1): 60-64.
[14] 付勇路,李鹏举,李勇勇,等. 高温地层对中子孔隙度测井的影响[J]. 测井技术,2018,42(5):525-529.

Fu Yonglu, Li Pengju, Li Yongyong, et al. Influence of high-temperature formation on neutron porosity logging[J]. Well Logging Technology, 2018, 42(5): 525-529.
[15] Baneshi M, Behzadijo M, Rostami M, et al. Using well logs to predict a multimin porosity model by optimized spread RBF networks[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2015, 37(22): 2443-2450.
[16] De Ceia M A R, Misságia R M, Neto I L, et al. Relationship between the consolidation parameter, porosity and aspect ratio in microporous carbonate rocks[J]. Journal of Applied Geophysics, 2015, 122: 111-121.
[17] Karabutov A A, Podymova N B. Influence of the porosity on the dispersion of the phase velocity of longitudinal acoustic waves in isotropic metal-matrix composites[J]. Acoustical Physics, 2017, 63(3): 288-296.
[18] Jafarinezhad S, Shahbazian M, Baghaee M R. Porosity estimation of a reservoir using geophysical well logs and an interval type-2 fuzzy logic system[J]. Petroleum Science and Technology, 2015, 33(11): 1222-1228.
[19] Esbensen K H, Martens H. Predicting oil-well permeability and porosity from wire-line petrophysical logs-a feasibility study using partial least squares regression[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1/2/3): 221-232.
[20] 朱世全,黄思静,彭东,等. 利用地球化学测井—密度测井建立的孔隙度解释模型及其校正分析[J]. 物探化探计算技术,2006,28(2):93-97.

Zhu Shiquan, Huang Sijing, Peng Dong, et al. A porosity model according to geochemimical well-log-density well-log and analyzing on its corrections[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2006, 28(2): 93-97.
[21] 伍丽红,罗利. BP神经网络在储量计算中的应用[J]. 天然气工业,2002,22(4):37-39.

Wu Lihong, Luo Li. Application of BP neural network method in estimation of reserves[J]. Natural Gas Industry, 2002, 22(4): 37-39.
[22] 陆万雨. 测井储层评价新技术应用研究[D]. 北京:中国地质大学(北京),2002:2.

Lu Wanyu. The new technique applied research in logging reservoir evaluation[D]. Beijing: China University of Geosciences (Beijing), 2002: 2.
[23] 牛永斌,崔胜利,胡亚洲,等. 塔里木盆地塔河油田奥陶系数字岩心图像中生物扰动的定量表征[J]. 古地理学报,2017,19(2):353-363.

Niu Yongbin, Cui Shengli, Hu Yazhou, et al. Quantitative characterization of bioturbation based on digital image analysis of the Ordovician core from Tahe oilfield of Tarim Basin[J]. Journal of Palaeogeography, 2017, 19(2): 353-363.
[24] 毛毳,钟建华,李勇,等. 塔河油田奥陶系碳酸盐岩基质孔缝型储集体特征[J]. 石油勘探与开发,2014,41(6):681-689.

Mao Cui, Zhong Jianhua, Li Yong, et al. Ordovician carbonate rock matrix fractured-porous reservoirs in Tahe oilfield[J]. Petroleum Exploration and Development, 2014, 41(6): 681-689.
[25] 赵建,杨玉芳,马勇,等. 塔河油田奥陶系海相碳酸盐岩储层分类及测井识别模式[J]. 新疆石油天然气,2015,11(4):6-11,21.

Zhao Jian, Yang Yufang, Ma Yong, et al. Classification and log detecting modes of Ordovician marine carbonate reservoirs in Tahe oilfield[J]. Xinjiang Oil & Gas, 2015, 11(4): 6-11, 21.
[26] 李阳. 塔河油田奥陶系碳酸盐岩溶洞型储集体识别及定量表征[J]. 中国石油大学学报(自然科学版),2012,36(1):1-7.

Li Yang. Ordovician carbonate fracture-cavity reservoirs identification and quantitative characterization in Tahe oilfield[J]. Journal of China University of Petroleum, 2012, 36(1): 1-7.
[27] 廖明光,裴钰,陈培元,等. 塔河油田4区岩溶缝洞型储层及其控制因素[J]. 西南石油大学学报(自然科学版),2013,35(4):1-8.

Liao Mingguang, Pei Yu, Chen Peiyuan, et al. Formation and controlling factors of karst fracture-cave reservoir in the 4th block of Tahe oilfield[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(4): 1-8.
[28] 陈兰朴,李国蓉,吴章志,等. 塔里木盆地塔河油田东南斜坡海西晚期奥陶系热液作用[J]. 天然气地球科学,2017,28(3):410-419.

Chen Lanpu, Li Guorong, Wu Zhangzhi, et al. Study on the Ordovician hydrothermal action at Late Hercynian in the southeast slope of Tahe oilfield, Tarim Basin[J]. Natural Gas Geoscience, 2017, 28(3): 410-419.
[29] 焦方正. 塔里木盆地深层碳酸盐岩缝洞型油藏体积开发实践与认识[J]. 石油勘探与开发,2019,46(3):552-558.

Jiao Fangzheng. Practice and knowledge of volumetric development of deep fractured-vuggy carbonate reservoirs in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(3): 552-558.
[30] 韩革华,漆立新,李宗杰,等. 塔河油田奥陶系碳酸盐岩缝洞型储层预测技术[J]. 石油与天然气地质,2006,27(6):860-870,878.

Han Gehua, Qi Lixin, Li Zongjie, et al. Prediction of the Ordovician fractured-vuggy carbonate reservoirs in Tahe oilfield[J]. Oil & Gas Geology, 2006, 27(6): 860-870, 878.
[31] 陈红汉,吴悠,丰勇,等. 塔河油田奥陶系油气成藏期次及年代学[J]. 石油与天然气地质,2014,35(6):806-819.

Chen Honghan, Wu You, Feng Yong, et al. Timing and chronology of hydrocarbon charging in the Ordovician of Tahe oilfield, Tarim Basin, NW China[J]. Oil & Gas Geology, 2014, 35(6): 806-819.
[32] 雷川,陈红汉,苏奥,等. 方解石充填物对于深层古岩溶洞穴保存的独特意义:以塔河地区奥陶系为例[J]. 沉积学报,2016,34(5):843-850.

Lei Chuan, Chen Honghan, Su Ao, et al. Distinctive significance of calcite fillings for preservation of deep buried karst paleocaves: Taking the Ordovician system in Tahe area for example[J]. Acta Sedimentologica Sinica, 2016, 34(5): 843-850.
[33] 刘学利,鲁新便. 塔河油田缝洞储集体储集空间计算方法[J]. 新疆石油地质,2010,31(6):593-595.

Liu Xueli, Lu Xinbian. Volume calculation merhod for fracture-cavity reservoir body in Tahe oilfield, Tarim Basin[J]. Xinjiang Petroleum Geology, 2010, 31(6): 593-595.
[34] 蔡涵鹏,贺振华,唐湘蓉,等. 碳酸盐岩孔隙结构影响分析和等效孔隙结构参数计算[J]. 石油物探,2013,52(6):566-572.

Cai Hanpeng, He Zhenhua, Tang Xiangrong, et al. Influence analysis of carbonate pore structure and calculation of equivalent pore structure parameters[J]. Geophysical Prospecting for Petroleum, 2013, 52(6): 566-572.
[35] 韩波,冯菊芳,何治亮,等. 四川盆地下寒武统豹斑灰岩成因机理及其对储层的影响[J]. 石油与天然气地质,2017,38(4):764-775,783.

Han Bo, Feng Jufang, He Zhiliang, et al. Origin of the Lower Cambrian leopard-pattern limestones and its influence on reservoirs in the Sichuan Basin[J]. Oil & Gas Geology, 2017, 38(4): 764-775, 783.
[36] Gingras M K, Pemberton S G, Muelenbachs K, et al. Conceptual models for burrow-related, selective dolomitization with textural and isotopic evidence from the Tyndall Stone, Canada[J]. Geobiology, 2004, 2(1): 21-30.
[37] Croizé D, Ehrenberg S N, Bjørlykke K, et al. Petrophysical properties of bioclastic platform carbonates: Implications for porosity controls during burial[J]. Marine and Petroleum Geology, 2010, 27(8): 1765-1774.
[38] 牛永斌,钟建华,王培俊,等. 成岩作用对塔河油田二区奥陶系碳酸盐岩储集空间发育的影响[J]. 中国石油大学学报(自然科学版),2010,34(6):13-19.

Niu Yongbin, Zhong Jianhua, Wang Peijun, et al. Effect of diagenesis on accumulate capability of Ordovician carbonate rock in block 2 of Tahe oilfield[J]. Journal of China University of Petroleum, 2010, 34(6): 13-19.
[39] Haines T J, Neilson J E, Healy D, et al. The impact of carbonate texture on the quantification of total porosity by image analysis[J]. Computers & Geosciences, 2015, 85: 112-125.
[40] Chen F F, Yang Y S, Pervukhina M, et al. Clustering analysis for porous media: An application to a dolomitic limestone[J]. Journal of Petroleum Science and Engineering, 2016, 146: 770-776.
[41] He J H, Ding W L, Li A, et al. Quantitative microporosity evaluation using mercury injection and digital image analysis in tight carbonate rocks: A case study from the Ordovician in the Tazhong Palaeouplift, Tarim Basin, NW China[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 627-644.
[42] Azomani E, Azmy K, Blamey N, et al. Origin of Lower Ordovician dolomites in eastern Laurentia: Controls on porosity and implications from geochemistry[J]. Marine and Petroleum Geology, 2013, 40: 99-114.
[43] Warren J. Dolomite: Occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1): 1-81.
[44] Gregg J M, Shelton K L, Johnson A W, et al. Dolomitization of the Waulsortian limestone (Lower Carboniferous) in the Irish midlands[J]. Sedimentology, 2001, 48(4): 745-766.
[45] Wright W R, Johnson A W, Shelton K L, et al. Fluid migration and rock interactions during dolomitisation of the Dinantian Irish midlands and Dublin Basin[J]. Journal of Geochemical Exploration, 2000, 69-70: 159-164.
[46] 赫云兰,刘波,秦善. 白云石化机理与白云岩成因问题研究[J]. 北京大学学报(自然科学版),2010,46(6):1010-1020.

He Yunlan, Liu Bo, Qin Shan. Study on the dolomitization and dolostone genesis[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2010, 46(6): 1010-1020.
[47] 黄擎宇,张哨楠,孟祥豪,等. 塔里木盆地中央隆起区寒武—奥陶系白云岩结构特征及成因探讨[J]. 沉积学报,2014,32(3):537-549.

Huang Qingyu, Zhang Shaonan, Meng Xianghao, et al. Textural types and origin of the Cambrian-Ordovician dolomite in the central Tarim Basin[J]. Acta Sedimentologica Sinica, 2014, 32(3): 537-549.
[48] 陈代钊,钱一雄. 深层—超深层白云岩储集层:机遇与挑战[J]. 古地理学报,2017,19(2):187-196.

Chen Daizhao, Qian Yixiong. Deep or super-deep dolostone reservoirs: Opportunities and challenges[J]. Journal of Palaeogeography, 2017, 19(2): 187-196.
[49] 牛永斌. 塔河油田二区奥陶系碳酸盐岩储集体研究[D]. 东营:中国石油大学(华东),2010:52-53.

Niu Yongbin. Study on the carbonate reservior of Ordovician in block 2 of Tahe oilfield[D]. Dongying: China University of Petroleum (East China), 2010: 52-53.
[50] 郭建华,沈昭国,李建明. 塔北东段下奥陶统白云石化作用[J]. 石油与天然气地质,1994,15(1):51-59.

Guo Jianhua, Shen Zhaoguo, Li Jianming. Dolomitization of Lower Ordovician in eastern sector of north Tarim region[J]. Oil & Gas Geology, 1994, 15(1): 51-59.
[51] 胡亚洲,牛永斌,崔胜利,等. 碳酸盐岩中生物潜穴充填特征及其诱导孔隙演化规律:以豫西奥陶系马家沟组三段为例[J]. 沉积学报,2019,37(4):690-701.

Hu Yazhou, Niu Yongbin, Cui Shengli, et al. Characteristics filled of burrows in carbonates and the evolution principle of burrow mediated pores:A case studied from the third member of the Ordovician Majiagou Formation, west Henan province[J]. Acta Sedimentologica Sinica, 2019, 37(4): 690-701.
[52] Knaust D. Ichnology as a tool in carbonate reservoir characterization: A case study from the Permian-Triassic Khuff Formation in the middle east[J]. GeoArabia, 2009, 14(3): 17-38.
[53] Kamel M H, Mabrouk W M, Bayoumi A I. Porosity estimation using a combination of Wyllie-Clemenceau equations in clean sand formation from acoustic logs[J]. Journal of Petroleum Science and Engineering, 2002, 33(4): 241-251.
[54] 马淑芳,韩大匡,甘利灯,等. 地震岩石物理模型综述[J]. 地球物理学进展,2010,25(2):460-471.

Ma Shufang, Han Dakuang, Gan Lideng, et al. A review of seismic rock physics models[J]. Progress in Geophysics, 2010, 25(2): 460-471.
[55] Makar K H, Kamel M H. An approach for minimizing errors in computing effective porosity in reservoir of shaly nature in view of Wyllie-Raymer-Raiga relationship[J]. Journal of Petroleum Science and Engineering, 2011, 77(3/4): 386-392.
[56] 王晓光,方圆,方金,等. 灰岩储层基质孔隙度计算方法探讨[J]. 石油地质与工程,2015,29(5):81-83.

Wang Xiaoguang, Fang Yuan, Fang Jin, et al. Discussion on calculation method of matrix porosity in limestone reservoir[J]. Petroleum Geology and Engineering, 2015, 29(5): 81-83.
[57] Schlumberger J. Log interpretation principles/applications[M]. Houton: Schlumberger Educational Services, 1987: 50-58.
[58] 国庆忠. 中子与密度测井在中原油田的应用[J]. 测井技术,2004,28(5):414-416.

Guo Qingzhong. Application of neutron-density log in Zhongyuan oilfield[J]. Well Logging Technology, 2004, 28(5): 414-416.
[59] 田方,崔永平,季红鹏,等. 密度测井在鄂尔多斯盆地油气田应用[J]. 国外测井技术,2007,22(4):14-16.

Tian Fang, Cui Yongping, Ji Hongpeng, et al. Application of density logging in oil and gas fields in Ordos Basin[J]. World Well Logging Technology, 2007, 22(4): 14-16.
[60] Liu H Y, Shi K B, Liu B, et al. Characterization and identification of bioturbation-associated high permeability zones in carbonate reservoirs of Upper Cretaceous Khasib Formation, AD oilfield, central Mesopotamian Basin, Iraq[J]. Marine and Petroleum Geology, 2019, 110: 747-767.