[1] Normark W R. Growth patterns of deep-sea fans[J]. AAPG Bulletin, 1970, 54(11): 2170-2195.
[2] Normark W R. Fan valleys, channels, and depositional lobes on modern submarine fans: characters for recognition of sandy turbidite environments[J]. AAPG Bulletin, 1978, 62(6): 912-931.
[3] Walker R G. Deep-water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps[J]. AAPG Bulletin, 1978, 62(6): 932-966.
[4] Piper D J W, Normark W R. Turbidite depositional Patterns and flow characteristics, Navy submarine fan, California borderland[J]. Sedimentology, 1983, 30(5): 681-694.
[5] Mutti E. Turbidite systems and their relations to depositional sequences[M]//Zuffa G G. Provenance of arenites. Dordrecht: Springer, 1985: 65-93.
[6] Mutti E, Normark W R. Comparing examples of modern and ancient turbidite systems: Problems and concepts[C]//Leggett J K, Zuffa G G. Marine clastic sedimentology: Concepts and case studies. Dordrecht: Springer, 1987: 1-38.
[7] Mutti E, Normark W R. An integrated approach to the study of turbidite systems[C]//Weimer P, Link M H. Seismic facies and sedimentary processes of submarine fans and turbidite systems. New York: Springer, 1991: 75-106.
[8] Covault J A, Kostic S, Paull C K, et al. Cyclic steps and related supercritical bedforms: Building blocks of deep-water depositional systems, western North America[J]. Marine Geology, 2016,393:4-2
[9] 谈明轩,朱筱敏,刘伟,等. 旋回阶梯底形的动力地貌及其相关沉积物发育特征[J]. 地质论评,2017,63(6):1512-1522.

Tan Mingxuan, Zhu Xiaomin, Liu Wei, et al. The morphodynamics of cyclic steps and sedimentary characteristics of associated deposits[J]. Geological Review, 2017, 63(6): 1512-1522.
[10] Cartigny M J B, Postma G, van den Berg J H, et al. A comparative study of sediment waves and cyclic steps based on geometries, internal structures and numerical modeling[J]. Marine Geology, 2011, 280(1/2/3/4): 40-56.
[11] 徐景平. 科学与技术并进:近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展,2013,28(5):552-558.

Xu Jingping. Accomplishments and challenges in measuring turbidity currents in submarine canyons[J]. Advances in Earth Science, 2013, 28(5): 552-558.
[12] 孙辉,唐鹏程,陈宇航,等. 东非鲁武马盆地陆坡深水沉积特征及主控因素[J]. 海洋地质与第四纪地质,2016,36(3):59-68.

Sun Hui, Tang Pengcheng, Chen Yuhang, et al. Characteristics and controlling factors of deepwater deposits on the continental slope of the Rovuma Basin, East Africa[J]. Marine Geology & Quaternary Geology, 2016, 36(3): 59-68.
[13] 操应长,杨田,王艳忠,等. 超临界沉积物重力流形成演化及特征[J]. 石油学报,2017,38(6):607-621.

Cao Yingchang, Yang Tian, Wang Yanzhong, et al. Formation, evolution and sedimentary characteristics of supercritical sediment gravity-flow[J]. Acta Petrolei Sinica, 2017, 38(6): 607-621.
[14] 王大伟,白宏新,吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展,2018,33(1):52-65.

Wang Dawei, Bai Hongxin, Wu Shiguo. The research progress of turbidity currents and related deep-water bedforms[J]. Advances in Earth Science, 2018, 33(1): 52-65.
[15] Parker G. Some speculations on the relation between channel morphology and channel-scale flow structures[M]//Ashworth P, Bennett S J, Best J L, et al. Coherent flow structures in open channels. Chichester: John Wiley & Sons, Ltd., 1996: 429-432.
[16] Spinewine B, Sequeiros O E, Garcia M H, et al. Experiments on wedge-shaped deep sea sedimentary deposits in minibasins and/or on channel levees emplaced by turbidity Currents. Part II. Morphodynamic evolution of the wedge and of the associated bedforms[J]. Journal of Sedimentary Research, 2009, 79(8): 608-628.
[17] Kostic S, Sequeiros O, Spinewine B, et al. Cyclic steps: A phenomenon of supercritical shallow flow from the high mountains to the bottom of the ocean[J]. Journal of Hydro-environment Research, 2010, 3(4): 167-172.
[18] Normandeau A, Lajeunesse P, Poiré A G, et al. Morphological expression of bedforms formed by supercritical sediment density flows on four fjord-lake deltas of the south-eastern Canadian Shield (Eastern Canada)[J]. Sedimentology, 2016, 63(7): 2106-2129.
[19] Turmel D, Locat J, Parker G. Morphological evolution of a well-constrained, subaerial⁃subaqueous source to sink system: Wabush Lake[J]. Sedimentology, 2015, 62(6): 1636-1664.
[20] Ventra D, Cartigny M J B, Bijkerk J F, et al. Supercritical-flow structures on a Late Carboniferous delta front: Sedimentologic and paleoclimatic significance[J]. Geology, 2015, 43(8): 731-734.
[21] Slootman A, Cartigny M J B. Cyclic steps: Review and aggradation-based classification[J]. Earth-Science Reviews, 2019, 201: 102949.
[22] Symons W O, Sumner E J, Talling P J, et al. Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows[J]. Marine Geology, 2016, 371: 130-148.
[23] Postma G, Cartigny M J B. Supercritical and subcritical turbidity currents and their deposits-A synthesis[J]. Geology, 2014, 42(11): 987-990.
[24] Talling P J, Allin J, Armitage D A, et al. Key future directions for research on turbidity currents and their deposits[J]. Journal of Sedimentary Research, 2015, 85(2): 153-169.
[25] Wynn R B, Kenyon N H, Masson D G, et al. Characterization and recognition of deep-water channel-lobe transition zones[J]. AAPG Bulletin, 2002, 86(8): 1441-1462.
[26] Coffin M F, Rabinowitz P D. Reconstruction of Madagascar and Africa: Evidence from the Davie Fracture Zone and western Somali Basin[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B9): 9385-9406.
[27] Mahanjane E S, Franke D. The Rovuma Delta deep-water fold-and-thrust belt, offshore Mozambique[J]. Tectonophysics, 2014, 614: 91-99.
[28] Salazar M U, Baker D, Francis M, et al. Frontier exploration offshore the Zambezi Delta, Mozambique[J]. First Break, 2013, 31(6): 135-144.
[29] 孙辉,吕福亮,范国章,等. 三级层序内受底流影响的富砂深水沉积演化规律:以东非鲁武马盆地中中新统为例[J]. 天然气地球科学,2017,28(1):106-115.

Sun Hui, Fuliang Lü, Fan Guozhang, et al. Evolution of deepwater sand-rich sediments affected by bottom currents in the 3rd order sequences: A case study of Middle Miocene in the Ruvuma Basin[J]. Natural Gas Geoscience, 2017, 28(1): 106-115.
[30] 孙辉,刘少治,马宏霞,等. 东非鲁武马盆地海底水道—朵体体系粗粒浊流沉积物波特征及主控因素[J]. 沉积学报,2017,35(4):763-771.

Sun Hui, Liu Shaozhi, Ma Hongxia, et al. Characteristics and controlling factors of coarse-grained turbidite sediment waves in submarine channel-lobe system of the Ruvuma Basin, East Africa[J]. Acta Sedimentologica Sinica, 2017, 35(4): 763-771.
[31] 张光亚,刘小兵,温志新,等. 东非被动大陆边缘盆地构造—沉积特征及其对大气田富集的控制作用[J]. 中国石油勘探,2015,20(4):71-80.

Zhang Guangya, Liu Xiaobing, Wen Zhixin, et al. Structural and sedimentary characteristics of passive continental margin basins in East Africa and their effect on the formation of giant gas fields[J]. China Petroleum Exploration, 2015, 20(4): 71-80.
[32] Energy IHS. Basin monitors: Ruvuma basin [M]. Houston: IHS Inc, 2009.
[33] Fonnesu M, Palermo D, Galbiati M, et al. A new world-class deep-water play-type, deposited by the syndepositional interaction of turbidity flows and bottom currents: The giant Eocene Coral Field in northern Mozambique[J]. Marine and Petroleum Geology, 2020, 111: 179-201.
[34] Wynn R B, Stow D A V. Classification and characterisation of deep-water sediment waves[J]. Marine Geology, 2002, 192(1/2/3): 7-22.
[35] Fildani A, Normark W R, Kostic S, et al. Channel formation by flow stripping: Large-scale scour features along the Monterey East Channel and their relation to sediment waves[J]. Sedimentology, 2006, 53(6): 1265-1287.
[36] Kostic S. Modeling of submarine cyclic steps: Controls on their formation, migration, and architecture[J]. Geosphere, 2011, 7(2): 294-304.
[37] Kenyon N H, Millington J. Contrasting deep-sea depositional systems in the Bering Sea[C]//Pickering K T, Hiscott R N, Kenyon N H, et al. Atlas of deep water environments: Architectural style in turbidite systems. Dordrecht: Springer, 1995: 196-202.
[38] Morris S A, Kenyon N H, Limonov A F, et al. Downstream changes of Large-scale bedforms in turbidites around the Valencia channel mouth, north-west Mediterranean: Implications for palaeoflow reconstruction[J]. Sedimentology, 1998, 45(2): 365-377.
[39] Cartigny M J B, Ventra D, Postma G, et al. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: New insights from flume experiments[J]. Sedimentology, 2014, 61(3): 712-748.
[40] Fildani A, Hubbard S M, Covault J A, et al. Erosion at inception of deep-sea channels[J]. Marine and Petroleum Geology, 2013, 41(1): 48-61.
[41] Hamilton P B, Strom K B, Hoyal D C J D. Hydraulic and sediment transport properties of autogenic avulsion cycles on submarine fans with supercritical distributaries[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(7): 1369-1389.
[42] Postma G, Hoyal D C, Abreu V, et al. Morphodynamics of supercritical turbidity currents in the channel-lobe transition zone[M]//Lamarche G, Mountjoy J, Bull S, et al. Submarine mass movements and their consequences. Cham: Springer, 2016: 469-478.