[1] Lin W, Feng Y, Yu K, et al. Long-lived radionuclides in marine sediments from the Beibu Gulf, South China Sea: Spatial distribution, controlling factors, and proxy for transport pathway[J]. Marine Geology, 2020: 106157.
[2] 林武辉,余克服,王英辉,等. 海洋沉积过程的铀系放射性核素示踪技术:物源识别、沉积、再悬浮[J]. 海洋地质与第四纪地质,2020,40(1):60-70.

Lin Wuhui, Yu Kefu, Wang Yinghui, et al. Using uranium-series radionuclides as tools for tracing marine sedimentary processes: Source identification, sedimentation rate, and sediment resuspension[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 60-70.
[3] Lin W H, Chen L Q, Zeng S, et al. Residual β activity of particulate 234Th as a novel proxy for tracking sediment resuspension in the ocean[J]. Scientific Reports, 2016, 6: 27069.
[4] 杨守业,韦刚健,石学法. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J]. 矿物岩石地球化学通报,2015,34(5):902-910.

Yang Shouye, Wei Gangjian, Shi Xuefa. Geochemical approaches of tracing source-to-sink sediment processes and environmental changes at the East Asian continental margin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(5): 902-910.
[5] Hu J F, Peng P A, Jia G D, et al. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, southern China[J]. Marine Chemistry, 2006, 98(2/3/4): 274-285.
[6] Łącka M, Pawłowska J, Zajączkowski M. New methods in the reconstruction of arctic marine palaeoenvironments[M]//Zielinski T, Weslawski M, Kuliński K. Impact of climate changes on marine environments. Cham: Springer, 2015: 127-148.
[7] 林武辉,余克服,王英辉,等. 珊瑚礁区沉积物的极低放射性水平特征与成因[J]. 科学通报,2018,63(21):2173-2183.

Lin Wuhui, Yu Kefu, Wang Yanghui, et al. Extremely low radioactivity in marine sediment of coral reefs and its mechanism[J]. Chinese Science Bulletin, 2018, 63(21): 2173-2183.
[8] Lin W H, Feng Y, Yu K F, et al. Comparative study of radioactivity levels and radionuclide fingerprints in typical marine ecosystems of coral reefs, mangroves, and hydrothermal vents[J]. Marine Pollution Bulletin, 2020, 152: 110913.
[9] Liu X M, Lin W H. Natural radioactivity in the beach sand and soil along the coastline of Guangxi province, China[J]. Marine Pollution Bulletin, 2018, 135: 446-450.
[10] 林武辉,冯禹,余克服,等. 北部湾沉积物中放射性核素的分布特征与控制因素[J]. 海洋学报,2020,42(2):143-154.

Lin Wuhui, Feng Yu, Yu Kefu, et al. Characteristics of radionuclides in sediments collected from the Beibu Gulf and influence factors[J]. Acta Oceanologica Sinica, 2020, 42(2): 143-154.
[11] 王文欢,余克服,王英辉. 北部湾涠洲岛珊瑚礁的研究历史、现状与特色[J]. 热带地理,2016,36(1):72-79.

Wang Wenhuan, Yu Kefu, Wang Yinghui. A review on the research of coral reefs in the Weizhou Island, Beibu Gulf[J]. Tropical Geography, 2016, 36(1): 72-79.
[12] Sanchez-Cabeza J A, Ruiz-Fernández A C. 210Pb sediment radiochronology: An integrated formulation and classification of dating models[J]. Geochimica et Cosmochimica Acta, 2012, 82: 183-200.
[13] Koide M, Soutar A, Goldberg E D. Marine geochronology with 210Pb[J]. Earth and Planetary Science Letters, 1972, 14(3): 442-446.
[14] 张敬,牟德海,杜金洲,等. 过剩210Pb年代学的多种计算模式的比较研究[J]. 海洋环境科学,2008,27(4):370-374,382.

Zhang Jing, Mou Dehai, Du Jinzhou, et al. Study on comparison of excess 210Pb chronology of several models[J]. Marine Environmental Science, 2008, 27(3): 370-374, 382.
[15] 林武辉,陈立奇,余雯,等. 白令海和楚科奇海陆架区的生源物质埋藏通量研究[J]. 极地研究,2016,28(2):194-202.

Lin Wuhui, Chen Liqi, Yu Wen, et al. Burial fluxes of biogenic materials in the Bering Sea and Chukchi Sea[J]. Chinese Journal of Polar Research, 2016, 28(2): 194-202.
[16] Lin W H, Yu K F, Wang Y H, et al. Radioactive level of coral reefs in the South China Sea[J]. Marine Pollution Bulletin, 2019, 142: 43-53.
[17] 梁越,肖化云,刘小真,等. δ13C和δ15N指示不同生态类型湖泊无机氮及有机质来源[J]. 湖泊科学,2014,26(5):691-697.

Liang Yue, Xiao Huayun, Liu Xiaozhen, et al. Identifying provenance of inorganic nitrogen and organic matter in different ecotype lakes using δ13C and δ15N[J]. Journal of Lake Sciences, 2014, 26(5): 691-697.
[18] 倪建宇,赵军,江巧文,等. 南海北部海域沉积物中生物钡、碳氮同位素的组成特征及其与表层水体初级生产之间的关系[J]. 海洋学报,2019,41(2):41-51.

Ni Jianyu, Zhao Jun, Jiang Qiaowen, et al. Biogenic barium, and nitrogen isotopes features in sediments of the northern South China Sea and their correlation with primary productivity of surface ocean[J]. Haiyang Xuebao, 2009, 41(2): 41-51.
[19] Zhang Y, Yu K F, Fan T L, et al. Geochemistry and petrogenesis of Quaternary basalts from Weizhou Island, northwestern South China Sea: Evidence for the Hainan plume[J]. Lithos, 2020, 362-363: 105493.
[20] Liu X T, Rendle-Bühring R, Henrich R. Geochemical composition of Tanzanian shelf sediments indicates Holocene climatic and sea-level changes[J]. Quaternary Research, 2017, 87(3): 442-454.
[21] Scott P J B, Davies M. Retroactive determination of industrial contaminants in tropical marine communities[J]. Marine Pollution Bulletin, 1997, 34(11): 975-980.
[22] Rudnick R L, Gao S. Composition of the continental crust[J]. Treatise on Geochemistry, 2003, 3: 1-64.
[23] 林武辉,余克服,王英辉,等. 罕见的地表低辐射水平区域:珊瑚礁区[J]. 辐射防护,2018,38(4):287-292.

Lin Wuhui, Yu Kefu, Wang Yinghui, et al. Unusual low radiation area on the surface of the earth: Coral reefs[J]. Radiation Protection, 2018, 38(4): 287-292.
[24] 林武辉,余克服,邓芳芳,等. 南海现代珊瑚骨骼中放射性核素特征指纹[J]. 中国环境科学,2019,39(10):4279-4289.

Lin Wuhui, Yu Kefu, Deng Fangfang, et al. Fingerprints of radionuclides in modern coral skeletons in the South China Sea[J]. China Environmental Science, 2019, 39(10): 4279-4289.
[25] 王宁,余克服,王英辉,等. 涠洲岛珊瑚骨骼重金属水平及其生物富集效应[J]. 广西大学学报(自然科学版),2019,44(2):570-579.

Wang Ning, Yu Kefu, Wang Yinghui, et al. Concentrations and bioaccumulation effects of heavy metals in coral skeletons from Weizhou Island[J]. Journal of Guangxi University (Natural Science Edition), 2019, 44(2): 570-579.
[26] Boyle E A. Anthropogenic trace elements in the ocean[M]//Cochran J K, Bokuniewicz H J, Yager P L. Encyclopedia of ocean sciences. 3rd ed. London: Academic Press, 2019: 128-135.
[27] Chen M L, Goodkin N F, Boyle E A, et al. Lead in the western South China Sea: Evidence of atmospheric deposition and upwelling[J]. Geophysical Research Letters, 2016, 43(9): 4490-4499.
[28] Hughes T P, Kerry J T, Álvarez-Noriega M, et al. Global warming and recurrent mass bleaching of corals[J]. Nature, 2017, 543(7645): 373-377.