[1] Murray R W. Chemical criteria to identify the depositional environment of chert: General principles and applications[J]. Sedimentary Geology, 1994, 90(3/4): 213-232.
[2] 冯增昭,何幼斌,吴胜和. 中下扬子地区二叠纪岩相古地理[M]. 北京:地质出版社,1991:33-41.

Feng Zengzhao, He Youbin, Wu Shenghe. Permian lithofacies paleogeography of Middle-Lower Yangtze region[M]. Beijing: Geologcal Publishing House, 1991: 33-41.
[3] 周永章,涂光炽, Chown E H,等. 粤西古水剖面震旦系顶部层状硅岩的热水成因属性:岩石学和地球化学证据[J]. 沉积学报,1994,12(3):1-11.

Zhou Yongzhang, Tu Guangchi, Chown E H, et al. Hydrothermal origin of top Sinian chert formation at Gusui, western Guangdong, China: Petrologic and geochemical evidence[J]. Acta Sedimentologica Sinica, 1994, 12(3): 1-11.
[4] 彭军,夏文杰,伊海生. 湘西晚前寒武纪层状硅质岩硅氧同位素组成及成因分析[J]. 地质论评,1995,41(1):34-41.

Peng Jun, Xia Wenjie, Yi Haisheng. Silicon and oxygen isotopic compositions and origin analysis of Late Precambrian bedded cherts in western Hunan[J]. Geological Review, 1995, 41(1): 34-41.
[5] 夏邦栋,钟立荣,方中,等. 1995. 下扬子区早二叠世孤峰组层状硅质岩成因[J]. 地质学报,1995,69(2):125-137.

Xia Bangdong, Zhong Lirong, Fang Zhong, et al. The origin of cherts of the Early Permian Gufeng Formation in the Lower Yangtze area, eastern China[J]. Acta Geologica Sinica, 1995, 69(2): 125-137.
[6] 徐跃通. 浙江西裘晚元古代层状硅质岩热水沉积地球化学标志及其沉积环境意义[J]. 地球化学,1996,25(6):600-608.

Xu Yuetong. The geochemical characteristics of hydrothermal sediment chert of the Late Proterozoic era and their sedimentary environmental implication in Xiqiu area, Zhejiang province[J]. Geochimica, 1996, 25(6): 600-608.
[7] 杨海生,周永章,杨志军,等. 热水沉积硅质岩地球化学特征及意义:以华南地区为例[J]. 中山大学学报(自然科学版),2003,42(6):111-115.

Yang Haisheng, Zhou Yongzhang, Yang Zhijun, et al. Geochemical characteristics and significance of hydrothermal cherts: A case study of South China[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2003, 42(6): 111-115.
[8] 冯胜斌,周洪瑞,燕长海,等. 东秦岭二郎坪群硅质岩热水沉积地球化学特征及其地质意义[J]. 沉积学报,2007,25(4):564-573.

Feng Shengbin, Zhou Hongrui, Yan Changhai, et al. Geochemical characteristics of hydrothermal cherts of Erlangping Group in East Qinling and their geologic significance[J]. Acta Sedimentologica Sinica, 2007, 25(4): 564-573.
[9] 林良彪,陈洪德,朱利东. 川东茅口组硅质岩地球化学特征及成因[J]. 地质学报,2010,84(4):500-507.

Lin Liangbiao, Chen Hongde, Zhu Lidong. The origin and geochemical characteristics of Maokou Formation silicalites in the eastern Sichuan Basin[J]. Acta Geologica Sinica, 2010, 84(4): 500-507.
[10] 杨玉卿,冯增昭. 华南下二叠统层状硅岩的形成及意义[J]. 岩石学报,1997,13(1):111-120.

Yang Yuqing, Feng Zengzhao. Formation and significance of the bedded siliceous rocks of the Lower Permian in South China[J]. Acta Petrologica Sinica, 1997, 13(1): 111-120.
[11] 杨水源,姚静. 安徽巢湖平顶山中二叠统孤峰组硅质岩的地球化学特征及成因[J]. 高校地质学报,2008,14(1):39-48.

Yang Shuiyuan, Yao Jing. Geochemistry and origin of siliceous rocks from the Gufeng Formation of Middle Permian in the Pingdingshan area, Chaohu region, Anhui province[J]. Geological Journal of China Universities, 2008, 14(1): 39-48.
[12] 郭福生,林子瑜,杜杨松,等. 一种特殊类型硅质岩的特征与成因研究[J]. 地学前缘,2003,10(4):573-581.

Guo Fusheng, Lin Ziyu, Du Yangsong, et al. On the characteristics and origin of a peculiar type of siliceous rock[J]. Earth Science Frontiers, 2003, 10(4): 573-581.
[13] 周新平,何幼斌,罗进雄,等. 川东地区二叠系结核状、条带状及团块状硅岩成因[J]. 古地理学报,2012,14(2):143-154.

Zhou Xinping, He Youbin, Luo Jinxiong, et al. Origin of the Permian nodular, striped and lump siliceous rock in eastern Sichuan province[J]. Journal of Palaeogeography, 2012, 14(2): 143-154.
[14] Knoll A H. Exceptional preservation of photosynthetic organisms in silicified carbonates and silicified peats[J]. Philosophical Transactions of the Royal Society B, 1985, 311(1148): 111-122.
[15] Knauth L P. A model for the origin of chert in limestone[J]. Geology, 1979, 7(6): 274-277.
[16] Chough S K, Kim S B, Chun S S. Sandstone/chert and laminated chert/black shale couplets, Cretaceous Uhangri Formation (southwest Korea): Depositional events in alkaline lake environments[J]. Sedimentary Geology, 1996, 104(1/2/3/4): 227-242.
[17] Maliva R G, Knoll A H, Simonson B M. Secular change in the Precambrian silica cycle: Insights from chert petrology[J]. Bulletin of the Geological Society of America, 2005, 117(7/8): 835-845.
[18] 张桥. 新疆三塘湖盆地二叠系芦草沟组硅质岩成因探讨[D]. 西安:西北大学,2018.

Zhang Qiao. The petrogenesis of siliceous rocks in Permian Lucaogou Formation, Santanghu Basin, Xinjiang[D]. Xi’an: Northwest University, 2018.
[19] 高媛,王国芝,李娜. 准噶尔盆地西北缘二叠系风城组硅质岩地球化学特征及成因[J]. 古地理学报,2019,21(4):647-660.

Gao Yuan, Wang Guozhi, Li Na. Geochemical features and origin of siliceous rocks of the Permian Fengcheng Formation in the northwestern margin of Junggar Basin[J]. Journal of Palaeogeography, 2019, 21(4): 647-660.
[20] Qi H W, Hu R Z, Su W C, et al. Continental hydrothermal sedimentary siliceous rock and genesis of superlarge germanium (Ge) deposit hosted in coal: A study from the Lincang Ge deposit, Yunnan, China[J]. Science in China Series D: Earth Sciences, 2004, 47(11): 973-984.
[21] 覃文圣,刘建波,韩宝福,等. 山东山旺中新世硅藻土的纹层类型及成因[J]. 沉积学报,2004,22(2):267-275.

Qin Wensheng, Liu Jianbo, Han Baofu, et al. Types and origin of diatomaceous laminae of the Miocene Shanwang Formation in Linqu, Shandong province[J]. Acta Sedimentologica Sinica, 2004, 22(2): 267-275.
[22] 林承焰,信荃麟,董春梅. 我国早第三纪湖泊中纹层状燧石的发现及成因探讨[J]. 石油实验地质,1996,18(4):385-391.

Lin Chengyan, Xin Quanlin, Dong Chunmei. Discovery and genetic study of laminated cherts in the Paleogene lakes of China[J]. Experimental Petroleum Geology, 1996, 18(4): 385-391.
[23] 陈登辉,巩恩普,梁俊红,等. 辽西下白垩统义县组湖相碳酸盐岩中的燧石成因[J]. 地质学报,2010,84(8):1208-1214.

Chen Denghui, Gong Enpu, Liang Junhong, et al. Mechanism of the chert formation within the lacustrine carbonates of the Lower Cretaceous Yixian Formation, western Liaoning[J]. Acta Geologica Sinica, 2010, 84(8): 1208-1214.
[24] Folk R L, Pittman J S. Length-slow chalcedony: A new testament for vanished evaporites[J]. Journal of Sedimentary Petrology, 1971, 41: 1045-1058.
[25] Jacka A D. Replacement of fossils by length-slow chalcedony and associated dolomitization[J]. Journal of Sedimentary Petrology, 1974, 44(2): 421-427.
[26] Oehler J H. Experimental studies in Precambrian paleontology: Structural and chemical changes in blue-green algae during simulated fossilization in synthetic chert[J]. GSA Bulletin, 1976, 68(1): 117-129.
[27] Heaney P J. Moganite as an indicator for vanished evaporites: A testament reborn?[J]. Journal of Sedimentary Research, 1995, A65(4): 633-638.
[28] Jones J B, Segnit E R. The nature of opal I. Nomenclature and constituent phases[J]. Journal of the Geological Society of Australia, 1971, 18(1): 57-68.
[29] Guthrie G D, Bish D L, Reynolds R C. Modeling the X-ray diffraction pattern of opal-CT[J]. American Mineralogist, 1995, 80(7/8): 869-872.
[30] Williams L A, Crerar D A. Silica diagenesis, II. General mechanisms[J]. Journal of Sedimentary Petrology, 1985, 55(3): 312-321.
[31] Williams L A, Parks G A, Crerar D A. Silica diagenesis, I. Solubility controls[J]. Journal of Sedimentary Petrology, 1985, 55(3): 301-311.
[32] Arakel A V, Jacobson G, Salehi M, et al. Silicification of calcrete in palaeodrainage basins of the Australian arid zone[J]. Australian Journal of Earth Sciences, 1989, 36(1): 73-89.
[33] Bustillo M A, Alonso-Zarza A M. Overlapping of pedogenesis and meteoric diagenesis in distal alluvial and shallow lacustrine deposits in the Madrid Miocene Basin, Spain[J]. Sedimentary Geology, 2007, 198(3/4): 255-271.
[34] Maliva R G, Siever R. Pre-Cenozoic nodular cherts: Evidence for opal-CT precursors and direct quartz replacement[J]. American Journal of Science, 1988, 288(8): 798-809.
[35] Milliken K L. The silicified evaporite syndrome—two aspects of silicification history of former evaporite nodules from southern Kentucky and northern Tennessee[J]. Journal of Sedimentary Research, 1979, 49(1): 245-256.
[36] Miehe G, Graetsch H. Crystal structure of moganite: A new structure type for silica[J]. European Journal of Mineralogy, 1992, 4: 693-706.
[37] Bustillo M A. Cherts with moganite in continental Mg-clay deposits: An example of “false” Magadi-type cherts, Madrid Basin, Spain[J]. Journal of Sedimentary Research, 2001, 71(3): 436-443.
[38] Krauskopf K B. Introduction to geochemistry[M]. 2nd ed. New York : McGraw-Hill, 1979: 1-617.
[39] Yariv S, Cross H. Geochemistry of colloid systems: For earth scientists[M]. Berlin: Springer, 1979: 1-450.
[40] Peterson M N A, von der Borch C C. Chert: Modern inorganic deposition in a carbonate-precipitating locality[J]. Science, 1965, 149(3691): 1501-1503.
[41] Bustillo M A. Silicification of continental carbonates[J]. Developments in Sedimentology, 2010, 62(1): 153-178.
[42] Ragland D A. Sedimentary geology of the Ordovician Cool Creek Formation as it is exposed in the Wichita Mountains of Southwestern Oklahoma[D]. Oklahoma: Oklahoma State University, 1983: 170.
[43] Rimstidt I D, Cole D R. Geothermal mineralization I: The mechanism of Formation of the Beowawe, Nevada, siliceous sinter deposit[J]. American Journal of Science, 1983, 283(8): 861-875.
[44] Holland H D. The chemistry of the atmosphere and oceans[M]. New York: John Wiley & Sons Inc., 1978: 1-351.
[45] Tréguer P, Nelson D M, van Bennekom A J, et al. The silica balance in the world ocean: A reestimate[J]. Science, 1995, 268(5209): 375-379.
[46] Laschet C. On the origin of cherts: Zur genese von cherts[J]. Facies, 1984, 10(1): 257-289.
[47] Eugster H P. Hydrous sodium silicates from Lake Magadi, Kenya: Precursors of bedded chert[J]. Science, 1967, 157(3793): 1177-1180.
[48] Eugster H P. Inorganic bedded cherts from the Magadi area, Kenya[J]. Contributions to Mineralogy and Petrology, 1969, 22(1): 1-31.
[49] Pirajno F, Grey K. Chert in the Palaeoproterozoic Bartle member, Killara Formation, Yerrida Basin, western Australia: A rift-related playa lake and thermal spring environment?[J]. Precambrian Research, 2002, 113(3/4): 169-192.
[50] White A H, Youngs B C. Cambrian alkali playa-lacustrine sequence in the northeastern Officer Basin, South Australia[J]. Journal of Sedimentary Petrology, 1980, 50(4): 1279-1286.
[51] Parnell J. Devonian Magadi-type cherts in the Orcadian Basin, Scotland[J]. Journal of Sedimentary Petrology, 1986, 56(4): 495-500.
[52] Parnell J. Significance of lacustrine cherts for the environment of source-rock deposition in the Orcadian Basin, Scotland[J]. Geological Society, London, Special Publications, 1988, 40(1): 205-217.
[53] Krainer K, Spötl C. Abiogenic silica layers within a fluvio-lacustrine succession, Bolzano Volcanic Complex, northern Italy: A Permian analogue for Magadi-type cherts?[J]. Sedimentology, 1998, 45(3): 489-505.
[54] Surdam R C, Parker R D. Authigenic aluminosilicate minerals in the tuffaceous rocks of the Green River Formation, Wyoming[J]. GSA Bulletin, 1972, 83(3): 689-700.
[55] Eugster H P, Surdam R C. Depositional environment of the Green River Formation of Wyoming: A preliminary report[J]. GSA Bulletin, 1973, 84(4): 1115-1120.
[56] Rooney T P, Jones B F, Neal J T. Magadiite from Alkali Lake, Oregon[J]. American Mineralogist, 1969, 54(7/8): 1034-1043.
[57] Maglione G. Un example de sedimentation continentale actuelle: La Bassin Tchadien[C]//Drprts evaporitiques. Paris: Editions Technip, 1979.
[58] Alderman A R. Aspects of carbonate sedimentation[J]. Journal of the Geological Society of Australia, 1958, 6(1): 1-10.
[59] von der Borch C. The distribution and preliminary geochemistry of modem carbonate sediments of the Coorong area, South Australia[J]. Geochimica et Cosmochimica Acta, 1965, 29(78): 781-799.
[60] von der Borch C C. Stratigraphy and Formation of Holocene dolomitic carbonate deposits of the Coorong area, South Australia[J]. Journal of Sedimentary Petrology, 1976, 46(4): 952-966.
[61] Colinvaux P A, Goodman D. Recent silica gel from saline lake in Galapagos Islands: ABSTRACT[J]. AAPG Bulletin, 1971, 55(2): 333-334.
[62] Wheeler W H, Textoris D A. Triassic limestone and chert of playa origin in North Carolina[J]. Journal of Sedimentary Petrology, 1978, 48(3): 765-776.
[63] Wells N A. Carbonate deposition, physical limnology and environmentally controlled chert Formation in Paleocene–Eocene Lake Flagstaff, central Utah[J]. Sedimentary Geology, 1983, 35(4): 263-296.
[64] Renaut R W, Owen R B. Opaline cherts associated with sublacustrine hydrothermal springs at Lake Bogoria, Kenya Rift valley[J]. Geology, 1988, 16(8): 699-702.
[65] Renaut R W, Jones B, Tiercelin J J. Rapid in situ silicification of microbes at Loburu hot springs, Lake Bogoria, Kenya rift valley[J]. Sedimentology, 1998, 45(6): 1083-1103.
[66] Arenas C, Zarza A M A, Pardo G. Dedolomitization and other early diagenetic processes in Miocene lacustrine deposits, Ebro Basin (Spain)[J]. Sedimentary Geology, 1999, 125(1/2): 23-45.
[67] Bustillo M A, Arribas M E, Bustillo M. Dolomitization and silicification in low-energy lacustrine carbonates (Paleogene, Madrid Basin, Spain)[J]. Sedimentary Geology, 2002, 151(1/2): 107-126.
[68] Bustillo M A, Armenteros I, Huerta P. Dolomitization, gypsum calcitization and silicification in carbonate–evaporite shallow lacustrine deposits[J]. Sedimentology, 2017, 64(4): 1147-1172.
[69] Gibert L, Ortí F, Rosell L. 2007. Plio-Pleistocene lacustrine evaporites of the Baza Basin (Betic Chain, SE Spain)[J]. Sedimentary Geology, 200(1/2): 89-116.
[70] Sola F, Puga-Bernabéu Á, Aguirre J, et al. Heterozoan carbonate deposition on a steep basement escarpment (Late Miocene, Almería, south-east Spain)[J]. Sedimentology, 2017, 64(4): 1107-1131.
[71] Hesse R. Silica diagenesis: Origin of inorganic and replacement cherts[J]. Earth-Science Reviews, 1989, 26(1/2/3): 253-284.
[72] Namy J N. Early diagenetic chert in the Marble Falls Group (Pennsylvanian) of central Texas[J]. Journal of Sedimentary Petrology, 1974, 44(4): 1262-1268.
[73] Wright P, Cherns L, Hodges P. Missing molluscs: Field testing taphonomic loss in the Mesozoic through early large-scale aragonite dissolution[J]. Geology, 2003, 31(3): 211-214.
[74] Southgate P N, Lambert I B, Donnelly T H, et al. Depositional environments and diagenesis in Lake Parakeelya: A Cambrian alkaline playa from the Officer Basin, South Australia[J]. Sedimentology, 1989, 36(6): 1091-1112.
[75] Giménez-Montsant J, Calvet F, Tucker M E. Silica diagenesis in Eocene shallow- water platform carbonates, southern Pyrenees[J]. Sedimentology, 1999, 46(6): 969-984.
[76] Banks N G. Nature and origin of early and Late cherts in the Leadville Limestone, Colorado[J]. GSA Bulletin, 1970, 81(10): 3033-3048.
[77] Carozzi A V, Gerber M S. Synsedimentary chert breccia: A Mississippian tempestite[J]. Journal of Sedimentary Petrology, 1978, 48(3): 705-708.
[78] Mahran T M. Late Oligocene lacustrine deposition of the Sodmin Formation, Abu Hammad Basin, Red Sea, Egypt: Sedimentology and factors controlling palustrine carbonates[J]. Journal of African Earth Sciences, 1999, 29(3): 567-592.
[79] Siever R. Silica solubility, 0°-200°C., and the diagenesis of siliceous sediments[J]. The Journal of Geology, 1962, 70(2): 127-150.
[80] Watson A, Nash D J. Desert crusts and varnishes[M]//Thomas D S G. Arid zone geomorphology: Process, form and change in drylands. Chichester: John Wiley & Sons, 1997: 69-107.
[81] Nash D J, Ullyott J S. Silcrete[M]//Nash D J, McLaren S J. Geochemical sediments and landscapes. Oxford: Blackwell, 2007: 95-143.
[82] Summerfield M A. Silcrete[M]//Goudie A S, Pye K. Chemical sediments and geomorphology. London: Academic Press, 1983: 59-91.
[83] Callen R A. Late Tertiary ‘grey billy’ and the age and origin of surficial silicifications (silcrete) in South Australia[J]. Journal of the Geological Society of Australia, 1983, 30(3/4): 393-410.
[84] Milnes A R, Thiry M. Silcretes[J]. Developments in Earth Surface Processes, 1992, 2: 349-377.
[85] Twidale C R, Bourne J A. The use of duricrusts and topographic relationships in geomorphological correlation: Conclusions based in Australian experience[J]. CATENA, 1998, 33(2): 105-122.
[86] Thiry M. Geochemical evolution and paleoenvironments of the Eocene continental deposits in the Paris Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1989, 70(1/2/3): 153-163.
[87] Webb J A, Golding S D. Geochemical mass-balance and oxygen-isotope constraints on silcrete Formation and its paleoclimatic implications in southern Australia[J]. Journal of Sedimentary Research, 1998, 68(5): 981-993.
[88] Thiry M. Diversity of continental silicification features: Examples from the Cenozoic deposits in the Paris Basin and neighbouring basement[M]//Thiry M, Simon-Coinçon R. Palaeoweathering, palaeosurfaces and related continental deposits. Oxford: Blackwell, 1999: 87-127.
[89] Thiry M, Ribet I. Groundwater silicification in Paris Basin limestones: Fabrics, mechanisms, and modeling[J]. Journal of Sedimentary Research, 1999, 69(1): 171-183.
[90] Ambrose G J, Flint R B. A regressive Miocene lake system and silicified strandlines in northern South Australia: Implications for regional stratigraphy and silcrete genesis[J]. Journal of the Geological Society of Australia, 1981, 28(1/2): 81-94.
[91] Summerfield M A. Distribution, nature and genesis of silcrete in arid and semi-arid southern Africa[J]. Catena, Supplement, 1982, 1: 37-65.
[92] Bustillo M A, Bustillo M. Rhythmic lacustrine sequences with silcretes from the Madrid Basin, Spain: Geochemical trends[J]. Chemical Geology, 1993, 107(3/4): 229-232.
[93] Bustillo M A, Bustillo M. Miocene silcretes in argillaceous playa deposits, Madrid Basin, Spain: Petrological and geochemical features[J]. Sedimentology, 2000, 47(5): 1023-1037.
[94] Armenteros I, Angeles Bustillo M A, Blanco J A. Pedogenic and groundwater processes in a closed Miocene Basin (northern Spain)[J]. Sedimentary Geology, 1995, 99(1): 17-36.
[95] Ringrose S, Huntsman-Mapila P, Kampunzu A B, et al. Sedimentological and geochemical evidence for palaeo-environmental change in the Makgadikgadi subbasin, in relation to the MOZ rift Depression, Botswana[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 217(3/4): 265-287.
[96] Alonso-Zarza A M, Sánchez-Moya Y, Bustillo M A, et al. Silicification and dolomitization of anhydrite nodules in argillaceous terrestrial deposits: An example of meteoric-dominated diagenesis from the Triassic of central Spain[J]. Sedimentology, 2002, 49(2): 303-317.
[97] Siedlecka A. Length-slow chalcedony and relicts of sulphates—evidences of evaporitic environments in the Upper Carboniferous and Permian beds of Bear Island, Svalbard[J]. Journal of Sedimentary Petrology, 1972, 42(4): 812-816.
[98] Siedlecka A. Silicified Precambrian evaporite nodules from northern Norway: A preliminary report[J]. Sedimentary Geology, 1976, 16(3): 161-175.
[99] Chowns T M, Elkins J E. The origin of quartz geodes and cauliflower cherts through the silicification of anhydrite nodules[J]. Journal of Sedimentary Petrology, 1974, 44(3): 885-903.
[100] Tucker M E. Quartz replaced anhydrite nodules (‘Bristol Diamonds’) from the Triassic of the Bristol District[J]. Geological Magazine, 1976, 113(6): 569-574.
[101] Tucker M E. Replaced evaporites from the Late Precambrian of Finnmark, Arctic Norway[J]. Sedimentary Geology, 1976, 16(3): 193-204.
[102] Schubel K A, Simonson B M. Petrography and diagenesis of cherts from Lake Magadi, Kenya[J]. Journal of Sedimentary Petrology, 1990, 60(5): 761-776.
[103] Yamamoto K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto terranes[J]. Sedimentary Geology, 1987, 52(1/2): 65-108.