[1] Frederickson A F, Reynolds Jr R C. Geochemical method for determining paleosalinity[M]//Swineford A. Clays and Clay Minerals. Lond: Pergamon, 1960: 203-213.
[2] Nelson B W. Sedimentary phosphate method for estimating paleosalinities[J]. Science, 1967, 158(3803): 917-920.
[3] Couch E L. Calculation of paleosalinities from boron and clay mineral data[J]. AAPG Bulletin, 1971, 55(10): 1829-1837.
[4] Holmden C, Creaser R A, Muehlenbachs K. Paleosalinities in ancient brackish water systems determined by 87Sr/86Sr ratios in carbonate fossils: A case study from the western Canada sedimentary basin[J]. Geochimica et Cosmochimica Acta, 1997, 61(10): 2105-2118.
[5] Ye C C, Yang Y B, Fang X M, et al. Late Eocene clay boron-derived paleosalinity in the Qaidam Basin and its implications for regional tectonics and climate[J]. Sedimentary Geology, 2016, 346: 49-59.
[6] Degens E T, Williams E G, Keith M L. Environmental studies of Carboniferous sediments Part I: Geochemical criteria for differentiating marine from fresh-water shales[J]. AAPG Bulletin, 1957, 41(11): 2427-2455.
[7] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific, 1985: 312pp.
[8] Ma Y Q, Fan M J, Lu Y C, et al. Climate-driven paleolimnological change controls lacustrine mudstone depositional process and organic matter accumulation: Constraints from lithofacies and geochemical studies in the Zhanhua Depression, eastern China[J]. International Journal of Coal Geology, 2016, 167: 103-118.
[9] Chen Z Y, Song B P, Wang Z H,et al. Late Quaternary evolution of the sub- aqueous Yangtze Delta, China: sedimentation, stratigraphy, palynology, and deformation[J]. Marine Geology, 2000,162 (2), 423-441,
[10] Chen Z Y, Chen Z L, Zhang W G. Quaternary stratigraphy and trace-element indices of the Yangtze Delta, eastern China, with special reference to marine transgressions[J]. Quaternary Research, 1997, 47(2): 181-191.
[11] Price P B, Walker R M. Fossil tracks of charged particles in mica and the age of minerals[J]. Journal of Geophysical Research, 1963, 68(16): 4847-4862.
[12] 王益友,郭文莹,张国栋. 几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用[J]. 同济大学学报,1979(2):51-60.

Wang Yiyou, Guo Wenying, Zhang Guodong. Application of some geochemical indicators in determining of sedimentary environment of the Funing Group (Paleogene), Jin-Hu Depression, Kiangsu province[J]. Journal of Tongji University, 1979(2): 51-60.
[13] 钱凯,时华星. 资源评价工作中古盐度测定法的选择[J]. 石油勘探与开发,1982(3):32-38.

Qian Kai, Shi Huaxing. The choice of the method of paleosalinity determination in resources evaluation[J]. Petroleum Exploration and Development, 1982(3): 32-38.
[14] 李成凤,肖继风. 用微量元素研究胜利油田东营盆地沙河街组的古盐度[J]. 沉积学报,1988,6(4):100-107.

Li Chengfeng, Xiao Jifeng. The application of trace element to the study on paleosalinities in Shahejie Formation of Dongying Basin Shengli oilfield[J]. Acta Sedimentologica Sinica, 1988, 6(4): 100-107.
[15] 邓宏文,钱凯. 沉积地球化学与环境分析[M]. 兰州:甘肃科学技术出版社,1993:4-97.

Deng Hongwen, Qian Kai. Sedimentary geochemistry and environment analysis[M]. Lanzhou: Science and Technology of Gansu Press, 1993: 4-97.
[16] Zhang X G, Lin C Y, Zahid M A, et al. Paleosalinity and water body type of Eocene Pinghu Formation, Xihu Depression, East China Sea Basin[J]. Journal of Petroleum Science and Engineering, 2017, 158: 469-478.
[17] Berner R A, Raiswell R. C/S method for distinguishing freshwater from marine sedimentary rocks[J]. Geology, 1984, 12(6): 365-368.
[18] Wang G L, Wang T G, Simoneit B R T, et al. The distribution of molecular fossils derived from dinoflagellates in Paleogene lacustrine sediments (Bohai Bay Basin, China)[J]. Organic Geochemistry, 2008, 39(11): 1512-1521.
[19] 唐祥华. 渤海湾盆地早第三纪钙质超微化石的发现及其意义[J]. 中国地质,1986(2):26.

Tang Xianghua. The significance of the discovery of calcareous nannofossil during Early Tertiary in Bohai Bay Basin[J]. Geology in China, 1986(2): 26.
[20] 唐祥华. 山东济阳坳陷纯化钲组生物群古生态及其沉积环境[J]. 海洋地质与第四纪地质,1983(3):107-112.

Tang Xianghua. Paleoecology and depositional environment of faunas from Chunhuazhen Formation in Jiyang Depression, Shandong[J]. Marine Geology & Quaternary Geology, 1983(3): 107-112.
[21] Hao Y C, Li H S. Discovery of Paleogene calcareous nannofossils in the Bohai Sea coastal and adjacent regions[J]. Chinese Science Bulletin, 1984, 29(12): 1662-1666.
[22] 钟筱春,钟石兰,费轩冬,等. 渤海湾盆地沙河街组一段颗石藻类化石及其沉积环境[J]. 微体古生物学报,1988,5(2):145-151.

Zhong Xiaochun, Zhong Shilan, Fei Xuandong, et al. Calcareous nannofossils from the Oligocene Shahejie-I member in the Bohai Basin and their sedimentary environment[J]. Acta Micropalaeontologica Sinica, 1988, 5(2): 145-151.
[23] Hou D J, Li M W, Huang Q H. Marine transgressional events in the gigantic freshwater lake Songliao: Paleontological and geochemical evidence[J]. Organic Geochemistry, 2000, 31(7/8): 763-768.
[24] 袁文芳,陈世悦,曾昌民. 渤海湾盆地古近纪海侵问题研究进展及展望[J]. 沉积学报,2005,23(4):604-612.

Yuan Wenfang, Chen Shiyue, Zeng Changmin. Research development and prospects on Paleogene sea transgression in Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2005, 23(4): 604-612.
[25] 袁文芳,陈世悦,曾昌民. 济阳坳陷古近系沙河街组海侵问题研究[J]. 石油学报,2006,27(4):40-44,49.

Yuan Wenfang, Chen Shiyue, Zeng Changmin. Study on marine transgression of Paleogene Shahejie Formation in Jiyang Depression[J]. Acta Petrolei Sinica, 2006, 27(4): 40-44, 49.
[26] 袁文芳,陈世悦,曾昌民,等. 渤海湾盆地东营凹陷古近纪paleodictyon遗迹化石的发现及其意义[J]. 地质科学,2007,42(4):779-786.

Yuan Wenfang, Chen Shiyue, Zeng Changmin, et al. Discovery and significance of Paleogene ichnofossil Paleodictyon in the Dongying Sag, Bohai Bay Basin[J]. Chinese Journal of Geology, 2007, 42(4): 779-786.
[27] 吴贤涛,张国成. 东濮凹陷古近系沙河街组边缘海—浅海相识别与油气储层[J]. 沉积学报,2015,33(2):364-375.

Wu Xiantao, Zhang Guocheng. Recognition of marginal to shallow marine deposits in Shahejie Formation (Palaeogene) Dongpu Depression and its reservoir significance[J]. Acta Sedimentologica Sinica, 2015, 33(2): 364-375.
[28] He J H, Ding W L, Jiang Z X, et al. Mineralogical and chemical distribution of the Es3l oil shale in the Jiyang Depression, Bohai Bay Basin (E China): Implications for paleoenvironmental reconstruction and organic matter accumulation[J]. Marine and Petroleum Geology, 2017, 81: 196-219.
[29] Czaya E. Rivers of the world[M]. Cambridge, UK: Cambridge University Press, 1981: 248.
[30] Lerman A, Imboden D, Gat J R. Physics and chemistry of lakes[M]. 2nd ed. New York: Springer, 1995: 334.
[31] Bohacs K M, Carroll A R, Neal J E, et al. Lake-Basin type, source potential, and hydrocarbon character: An integrated sequence-stratigraphic-geochemical framework[M]. //Gierlowski-Kordesch E H, Kelts K R. Lake basins through space and time. AAPG Studies in Geology. Wisconsin: University of Wisconsin-Madison, 2000: 3-34.
[32] Wetzel R G. Limnology: Lake and river ecosystems[M]. 3rd ed. San Diego: Academic Press, 2001: 1006.
[33] Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
[34] Allan J D, Castillo M M. Stream ecology: Structure and function of running waters[M]. 2nd ed. Dordrecht: Springer, 2007: 372.
[35] Eugster H P, Hardie L A. Saline lakes[M]//Lerman A. Lakes: Chemistry, geology, physics. New York: Springer, 1978: 237-293.
[36] Bennett D M, Fritz S C, Holz J C. et al. Evaluating climatic and non-climatic influences on ion chemistry in natural and man-made lakes of Nebraska, USA[J]. Hydrobiologia, 2007, 591(1): 103-115.
[37] Anadón P, Gliozzi E, Mazzini I. Paleoenvironmental reconstruction of marginal marine environments from combined paleoecological and geochemical analyses on ostracods[M]//Holmes J A, Chivas A R. The ostracoda: Applications in Quaternary research. Washington, DC: American Geophysical Union, 2002: 227-247.
[38] Boyer B W. Green River laminites: Does the playa-lake model really invalidate the stratified-lake model?[J]. Geology, 1982, 10(6): 321-324.
[39] Carroll A R, Bohacs K M. Lake-type controls on petroleum source rock potential in nonmarine basins[J]. AAPG Bulletin, 2001, 85(6): 1033-1053.
[40] Hatton R S, DeLaune R D, Patrick Jr W H. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana[J]. Limnology and Oceanography, 1983, 28(3): 494-502.
[41] Leatherman S P, Zhang K Q, Douglas B C. Sea level rise shown to drive coastal erosion[J]. Eos, Transactions American Geophysical Union, 2000, 81(6): 55-57.
[42] Simas T, Nunes J P, Ferreira J G. Effects of global climate change on coastal salt marshes[J]. Ecological Modelling, 2001, 139(1): 1-15.
[43] Anthony A, Atwood J, August P, et al. Coastal lagoons and climate change: Ecological and social ramifications in U.S. Atlantic and Gulf coast ecosystems[J]. Ecology and Society, 2009, 14(1): 8.
[44] Sumner D M, Belaineh G. Evaporation, precipitation, and associated salinity changes at a humid, subtropical estuary[J]. Estuaries, 2005, 28(6): 844-855.
[45] Trenberth K E. Changes in precipitation with climate change[J]. Climate Research, 2011, 47(1/2): 123-138.
[46] Paerl H W, Valdes L M, Joyner A R, et al. Ecological response to hurricane events in the Pamlico Sound system, North Carolina, and implications for assessment and management in a regime of increased frequency[J]. Estuaries and Coasts, 2006, 29(6): 1033-1045.
[47] Michener W K, Blood E R, Bildstein K L, et al. Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands[J]. Ecological Applications, 1997, 7(3): 770-801.
[48] Emeis K C, Struck U, Blanz T, et al. Salinity changes in the central Baltic Sea (NW Europe) over the last 10000 years[J]. The Holocene, 2003, 13(3): 411-421.
[49] Roemmich D, Gilson J. The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program[J]. Progress in Oceanography, 2009, 82(2): 81-100.
[50] Weber S L, Drijfhout S S, Abe-Ouchi A, et al. The modern and glacial overturning circulation in the Atlantic Ocean in PMIP coupled model simulations[J]. Climate of the Past, 2007, 3(1): 51-64.
[51] Fu F X, Bell P R F. Effect of salinity on growth, pigmentation, N2 fixation and alkaline phosphatase activity of cultured Trichodesmium sp[J]. Marine Ecology Progress Series, 2003, 257: 69-76.
[52] Beardsley R C, Limeburner R, Yu H, et al. Discharge of the Changjiang (Yangtze River) into the East China Sea[J]. Continental Shelf Research, 1985, 4(1/2): 57-76.
[53] Markus T, Kottmeier C, Fahrbach E. Ice Formation in coastal polynyas in the Weddell Sea and their impact on oceanic salinity[M]//Jeffries M O. Antarctic sea ice: Physical processes, interactions and variability. Washington: American Geophysical Union, 1998: 273-292.
[54] Stott L, Cannariato K, Thunell R, et al. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene Epoch[J]. Nature, 2004, 431(7004): 56-59.
[55] Bischoff J L, Rosenbauer R J. Salinity variations in submarine hydrothermal systems by layered double-diffusive convection[J]. The Journal of Geology, 1989, 97(5): 613-623.
[56] Hay W W, Migdisov A, Balukhovsky A N, et al. Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and life[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1/2): 3-46.
[57] Huheey J E, Keiter E A, Keiter R L. Inorganic chemistry: Principles of structure and reactivity[M]. 4th ed. London: Pearson Education, 2006: pp808.
[58] Lee K, Kim T W, Byrne R H. et al. The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans[J]. Geochimica et Cosmochimica Acta, 2010, 74(6): 1801-1811.
[59] Kuliński K, Schneider B, Szymczycha B, et al. Structure and functioning of the acid–base system in the Baltic Sea[J]. Earth System Dynamics, 2017, 8(4): 1107-1120.
[60] Orians K J, Bruland K W. The marine geochemistry of dissolved gallium: A comparison with dissolved aluminum[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2955-2962.
[61] McAlister J, Orians K. Calculation of river-seawater endmembers and differential trace metal scavenging in the Columbia River plume[J]. Estuarine, Coastal and Shelf Science, 2012, 99: 31-41.
[62] McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems,2001, 2(4):24.
[63] Chegrouche S, Mellah A, Barkat M. Removal of strontium from aqueous solutions by adsorption onto activated carbon: Kinetic and thermodynamic studies[J]. Desalination, 2009, 235(1/2/3): 306-318.
[64] Vetter L, Spero H J, Eggins S M, et al. Oxygen isotope geochemistry of Laurentide ice-sheet meltwater across Termination I[J]. Quaternary Science Reviews, 2017, 178: 102-117.
[65] Von Allmen K, Böttcher M E, Samankassou E, et al. Barium isotope fractionation in the global barium cycle: First evidence from barium minerals and precipitation experiments[J]. Chemical Geology, 2010, 277(1/2): 70-77.
[66] Halverson G P, Hurtgen M T. Ediacaran growth of the marine sulfate reservoir[J]. Earth and Planetary Science Letters, 2007, 263(1/2): 32-44.
[67] Zaback D A, Pratt L M. Isotopic composition and speciation of sulfur in the Miocene Monterey Formation: Reevaluation of sulfur reactions during early diagenesis in marine environments[J]. Geochimica et Cosmochimica Acta, 1992, 56(2): 763-774.
[68] Dai S F, Ren D Y, Zhou Y P, et al. Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation[J]. Chemical Geology, 2008, 255(1/2): 182-194.
[69] Wei W, Algeo T J, Lu Y B, et al. Identifying marine incursions into the Paleogene Bohai Bay Basin lake system in northeastern China[J]. International Journal of Coal Geology, 2018, 200: 1-17.
[70] Zhao L, Zheng T Y. Seismic structure of the Bohai Bay Basin, northern China: Implications for Basin evolution[J]. Earth and Planetary Science Letters, 2005, 231(1/2): 9-22.
[71] Allen M B, MacDonald D I M, Xun Z, et al. Early Cenozoic two-phase extension and Late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China[J]. Marine and Petroleum Geology, 1997, 14(7/8): 951-972.
[72] Guo X W, Liu K Y, He S, et al. Petroleum generation and charge history of the northern Dongying Depression, Bohai Bay Basin, China: Insight from integrated fluid inclusion analysis and Basin modelling[J]. Marine and Petroleum Geology, 2012, 32(1): 21-35.
[73] Liu Z H, Huang C J, Algeo T J, et al. High-resolution astrochronological record for the Paleocene-Oligocene (66-23 Ma) from the rapidly subsiding Bohai Bay Basin, northeastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 510: 78-92.
[74] 赵乐强. 济阳坳陷古近系—新近系地层油藏形成机制与分布规律[D]. 青岛:中国海洋大学,2011.

Zhao Leqiang. Formation mechanism and distribution of Paleogene-Neogene stratigraphic reservoirs in Jiyang Depression[D]. Qingdao: Ocean University of China, 2011.
[75] Hu S B, O’Sullivan P B, Raza A, et al. Thermal history and tectonic subsidence of the Bohai Basin, northern China: A Cenozoic rifted and local pull-apart Basin[J]. Physics of the Earth and Planetary Interiors, 2001, 126(3/4): 221-235.
[76] Shi D S, Li M W, Pang X Q, et al. Fault-fracture mesh petroleum plays in the Zhanhua Depression, Bohai Bay Basin: Part 2. Oil-source correlation and secondary migration mechanisms[J]. Organic Geochemistry, 2005, 36(2): 203-223.
[77] Ma B B, Eriksson K A, Cao Y C, et al. Fluid flow and related diagenetic processes in a rift Basin: Evidence from the fourth member of the Eocene Shahejie Formation interval, Dongying Depression, Bohai Bay Basin, China[J]. AAPG Bulletin, 2016, 100(11): 1633-1662.
[78] Feng Y L, Jiang S, Hu S Y, et al. Sequence stratigraphy and importance of syndepositional structural slope-break for architecture of Paleogene syn-rift lacustrine strata, Bohai Bay Basin, E. China[J]. Marine and Petroleum Geology, 2016, 69: 183-204.
[79] 宫秀梅,曾溅辉. 渤南洼陷古近系膏盐层对深层油气成藏的影响[J]. 石油地质研究,2003,30(5):24-27.

Gong Xiumei, Zeng Jianhui. Impact of Paleogene evaporates on hydrocarbon accumulation in deep Bonan Sub-Sag, Jiyang Depression[J]. Petroleum Exploration and Development, 2003, 30(5): 24-27.
[80] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
[81] Winter A, Siesser W G. Coccolithophores[M]. Cambridge: Cambridge University Press, 2006: 247.
[82] Huggett J M, Cuadros J. Glauconite Formation in lacustrine/palaeosol sediments, Isle of Wight (Hampshire Basin), UK[J]. Clay Minerals, 2010, 45(1): 35-49.
[83] 何镜宇,余素玉. 黄骅坳陷北部下第三系的海绿石[J]. 地球科学,1982(1):129-143.

He Jingyu, Yu Suyu. Occurrence of glauconite in Lower Tertiary of northern Huang-Hua Depression[J]. Earth Science, 1982(1): 129-143.
[84] 侯祐堂,杨恒仁. 中国中、新生代介形类动物群的特征及其生活环境的探讨[J]. 石油学报,1980,1(1):21-30.

Hou Youtang, Yang Hengren. A study of the Mesozoic and Cenozoic ostracod faunas of China with special reference to their ecological aspects[J]. Acta Petrolei Sinica, 1980, 1(1): 21-30.
[85] 裘松余,林景星. 我国第三纪有孔虫动物群及其与找油关系的讨论[J]. 石油与天然气地质,1980,1(3):208-219.

Qiu Songyu, Lin Jinxing. Tertiary foraminiferal faunas of China and their significance in oil & gas prospecting[J]. Oil & Gas Geology, 1980, 1(3): 208-219.
[86] 张国栋,王慧中. 中国东部早第三纪海侵和沉积环境[M]. 北京:地质出版社,1987:33-80.

Zhang Guodong, Wang Huizhong. Transgression and depositional environments of Eogene in the eastern China: A case study from Subei Basin[J]. Beijing: Geological Publishing House, 1987: 33-80.
[87] 于众. 我国辽河地区发现钙质微型化石[J]. 石油勘探与开发,1982(3):82-83.

Yu Zhong. Discovery of calcareous nanofossils in Liaohe area[J]. Petroleum Exploration and Development, 1982(3): 82-83.
[88] 吴宝铃. 石油和虫管化石[J]. 海洋科学,1980(1):19-22.

Wu Baoling. Petroleum and Fossil Tube[J]. Marine Sciences, 1980(1): 19-22.
[89] Yao W S, Millero F J. Oxidation of hydrogen sulfide by hydrous Fe(III) oxides in seawater[J]. Marine Chemistry, 1996, 52(1): 1-16.
[90] 任来义,林桂芳,赵志清,等. 东濮凹陷早第三纪的海侵(泛)事件[J]. 古生物学报,2000,39(4):553-557.

Ren Laiyi, Lin Guifang, Zhao Zhiqing, et al. Early Tertiary marine transgression in Dongpu Depression[J]. Acta Palaeontologica Sinica, 2000, 39(4): 553-557.
[91] 葛瑞全. 济阳坳陷新生界海绿石的存在及其地质意义[J]. 沉积学报,2004,22(2):276-280.

Ge Ruiquan. Occurrence and geological significance of glauconite in Cenozoic Group of Jiyang Depression[J]. Acta Sedimentologica Sinica, 2004, 22(2): 276-280.
[92] 孟凡巍,欧志吉,高红灿. 渤海湾盆地海侵的证据:来自沟鞭藻化石的证据[C]//全国微体古生物学分会第九届会员代表大会暨第十四次学术年会、全国化石藻类专业委员会第七届会员代表大会暨第十五次学术讨论会论文摘要集. 腾冲:中国古生物学会微体古生物学分会,2012:32.[

Meng Fanwei, Zhiji Ou, Gao Hongcan. The evidence of marine transgression in to Bohai Bay Basin: Evidence from Dinoflagellates[C]//9th national micropaleontology association member representative conference: 14th annual meeting. Tengchong: Micropaleology Branch of Chinese Paleontological Society, 2012: 32.]
[93] Odin G S, Matter A. De glauconiarum origine[J]. Sedimentology, 1981, 28(5): 611-641.
[94] 同济大学海洋地质系. 海、陆相地层辨认标志[M]. 北京:科学出版社,1980:171-175.

Department of Marine Geology, Tongji University. Identification key of marine and continental facies[J]. Beijing: Science Press, 1980: 171-175.
[95] 张晓龙,冀华丽,李媛姝,等. 微量元素分析在南堡凹陷南部的应用[J]. 特种油气藏,2000,22(2):67-69.

Zhang Xiaolong, Ji Huali, Li Yuanzhu, et al. Application of analysis on trace elements in sedimentary environment, southern Nanpu Sag[J]. Special Oil & Gas Reservoirs, 2015, 22(2): 67-69.
[96] Miller K G, Kominz M A, Browning J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1293-1298.
[97] Riding R. Calcareous algae and stromatolites[M]. Berlin: Springer, 1991: 571.
[98] 石油化学工业部石油勘探开发规划研究院,中国科学院南京地质古生物研究所. 渤海沿岸地区早第三纪介形类[J]. 北京:科学出版社,1978:205.

Institute of Petroleum Exploration and Development Planning, Ministry of Petrochemical Industry, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences. Early Tertiary ostracode fauna from the coastal region of Bohai[M]. Beijing: Science Press, 1978: 205.
[99] Cao X Z, Li S Z, Xu L Q, et al. Mesozoic⁃Cenozoic evolution and mechanism of tectonic geomorphology in the central North China Block: Constraint from apatite fission track thermochronology[J]. Journal of Asian Earth Sciences, 2015, 114(1): 41-53.
[100] Zhao R, Wang Q F, Liu X F, et al. Uplift history of the Jiaodong Peninsula, eastern North China Craton: Implications for lithosphere thinning and gold mineralization[J]. Geological Magazine, 2018, 155(4): 979-991.
[101] Wang F, Li J, Chen Y, et al. The record of mid-Holocene maximum landward marine transgression in the west coast of Bohai Bay, China[J]. Marine Geology, 2015, 359: 89-95.
[102] Li M W, Pang X Q. Contentious petroleum geochemical issues in China's sedimentary basins[J]. Petroleum Science, 2004, 1(3): 4-22.
[103] Ding W L, Wan H, Zhang Y Q, et al. Characteristics of the Middle Jurassic marine source rocks and prediction of favorable source rock kitchens in the Qiangtang Basin of Tibet[J]. Journal of Asian Earth Sciences, 2013, 66: 63-72.
[104] Katz B J. Factors controlling the development of lacustrine petroleum source rocks-an update[M]//Huc A Y. Paleogeography, paleoclimate, and source rocks. Tulsa: AAPG, 1995: 61-79.
[105] Erbacher J, Huber B T, Norris R D, et al. Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous Period[J]. Nature, 2001, 409(6818): 325-327.
[106] 侯读杰,张善文,肖建新,等. 济阳坳陷优质烃源岩特征与隐蔽油气藏的关系分析[J]. 地学前缘,2008,15(2):137-146.

Hou Dujie, Zhang Shanwen, Xiao Jianxin, et al. The excellent source rocks and accumulation of stratigraphic and lithologic traps in the Jiyang Depression, Bohai Bay Basin, China[J]. Earth Science Frontiers, 2008, 15(2): 137-146.