[1] 储雪蕾. 新元古代的“雪球地球”[J]. 矿物岩石地球化学通报,2004,24(3):233-238.

Chu Xuelei. “Snowball Earth” during the Neoproterozoic[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2004, 24(3): 233-238.
[2] 冯东,陈多福,刘芊. 新元古代晚期盖帽碳酸盐岩的成因与"雪球地球"的终结机制[J]. 沉积学报,2006,24(2):235-241.

Feng Dong, Chen Duofu, Liu Qian. Formation of Late Neoproterozoic cap carbonates and termination mechanism of “Snowball Earth”[J]. Acta Sedimentologica Sinica, 2006, 24(2): 235-241.
[3] 黄晶,储雪蕾,张启锐,等. 新元古代冰期及其年代[J]. 地学前缘,2007,14(2):249-256.

Huang Jing, Chu Xuelei, Zhang Qirui, et al. Constraints on the age of Neoproterozoic global glaciations[J]. Earth Science Frontiers, 2007, 14(2): 249-256.
[4] 赵彦彦,郑永飞. 全球新元古代冰期的记录和时限[J]. 岩石学报,2011,27(2):545-565.

Zhao Yanyan, Zheng Yongfei. Record and time of Neoproterozoic glaciations on earth[J]. Acta Petrologica Sinica, 2011, 27(2): 545-565.
[5] Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic snowball earth[J]. Science, 1998, 281(5381): 1342-1346.
[6] Och L M, Shields-Zhou G A. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling[J]. Earth-Science Reviews, 2012, 110(1/2/3/4): 26-57.
[7] 叶云涛,王华建,翟俪娜,等. 新元古代重大地质事件及其与生物演化的耦合关系[J]. 沉积学报,2017,35(2):203-216.

Ye Yuntao, Wang Huajian, Zhai Li’na, et al. Geological events and their biological responses during the Neoproterozoic Era[J]. Acta Sedimentologica Sinica, 2017, 35(2): 203-216.
[8] Love G D, Grosjean E, Stalvies C, et al. Fossil steroids record the appearance of Demospongiae during the Cryogenian period[J]. Nature, 2009, 457(7230): 718-721.
[9] Love G D, Summons R E. The molecular record of Cryogenian sponges—A response to Antcliffe (2013)[J]. Palaeontology, 2015, 58(6): 1131-1136.
[10] Butterfield N J. Early evolution of the Eukaryota[J]. Palaeontology, 2015, 58(1): 5-17.
[11] Sahoo S K, Planavsky N J, Jiang G, et al. Oceanic oxygenation events in the anoxic Ediacaran ocean[J]. Geobiology, 2016, 14(5): 457-468.
[12] Hyde W T, Crowley T J, Baum S K, et al. Neoproterozoic 'Snowball Earth' simulations with a coupled climate/ice-sheet model[J]. Nature, 2000, 405(6785): 425-429.
[13] Ye Q, Tong J N, Xiao S H, et al. The survival of benthic macroscopic phototrophs on a Neoproterozoic snowball earth[J]. Geology, 2015, 43(6): 507-510.
[14] Cohen P A, Macdonald F A, Pruss S, et al. Fossils of putative marine algae from the Cryogenian glacial interlude of Mongolia[J]. Palaios, 2015, 30(3): 238-247.
[15] 李美俊,王铁冠. 扬子区新元古代“雪球”时期古环境的分子地球化学证据[J]. 地质学报,2007,81(2):220-229.

Li Meijun, Wang Tieguan. Molecular geochemical evidence for the Paleoenvironment of the Late Neoproterozoic "Snowball Earth" age in the Yangtze region[J]. Acta Geologica Sinica, 2007, 81(2): 220-229.
[16] 陈兴群,肖贻昌. 南极海冰微型生物的研究概况[J]. 海洋科学,1986,10(4):46-50.

Chen Xingqun, Xiao Yichang. A survey of Antarctic Sea Ice microorganisms[J]. Marine Science, 1986, 10(4): 46-50.
[17] Hoffman P F. Cryoconite pans on snowball earth: Supraglacial oases for Cryogenian eukaryotes?[J]. Geobiology, 2016, 14(6): 531-542.
[18] Bolhar R, van Kranendonk M J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates[J]. Precambrian Research, 2007, 155(3/4): 229-250.
[19] Frimmel H E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator[J]. Chemical Geology, 2009, 258(3/4): 338-353.
[20] Li G J, Chen J, Ji J F, et al. Global cooling forced increase in marine strontium isotopic ratios: Importance of mica weathering and a kinetic approach[J]. Earth and Planetary Science Letters, 2007, 254(3/4): 303-312.
[21] Banner J L, Hanson G N. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis[J]. Geochimica et Cosmochimica Acta, 1990, 54(11): 3123-3137.
[22] Liu X M, Hardisty D S, Lyons T W, et al. Evaluating the fidelity of the cerium paleoredox tracer during variable carbonate diagenesis on the Great Bahamas Bank[J]. Geochimica et Cosmochimica Acta, 2019, 248: 25-42.
[23] Zhao Y Y, Zheng Y F, Chen F K. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China[J]. Chemical Geology, 2009, 265(3/4): 345-362.
[24] 黄晶,储雪蕾,常华进,等. 三峡地区埃迪卡拉系陡山沱组帽碳酸盐岩的微量元素和稀土元素研究[J]. 科学通报,2009,54(22):3498-3506.

Huang Jing, Chu Xuelei, Chang Huajin, et al. Trace element and rare earth element of cap carbonate in Ediacaran Doushantuo Formation in Yangtze Gorges[J]. Chinese Science Bulletin, 2009, 54(22): 3498-3506.
[25] 闫斌,朱祥坤,唐索寒,等. 三峡地区陡山沱早期水体性质的稀土元素和锶同位素制约[J]. 现代地质,2010,24(5):832-839.

Yan Bin, Zhu Xiangkun, Tang Suohan, et al. Characteristics of Sr isotopes and rare earth elements of cap carbonates in Doushantuo Formation in the Three Gorges area[J]. Geoscience, 2010, 24(5): 832-839.
[26] 王家生,甘华阳,魏清,等. 三峡"盖帽"白云岩的碳、硫稳定同位素研究及其成因探讨[J]. 现代地质,2005,19(1):14-20.

Wang Jiasheng, Gan Huayang, Wei Qing, et al. Stable isotopes of carbon and sulfur of cap dolomite in the Three Gorges and its mechanism discussion[J]. Geoscience, 2005, 19(1): 14-20.
[27] 戴传固,陈建书,卢定彪,等. 黔东及邻区武陵运动及其地质意义[J]. 地质力学学报,2010,16(1):78-84.

Dai Chuangu, Chen Jianshu, Lu Dingbiao, et al. Wuling orogeny in eastern Guizhou and its adjacent regions and its geological significance[J]. Journal of Geomechanics, 2010, 16(1): 78-84.
[28] Lang X G, Chen J T, Cui H, et al. Cyclic cold climate during the Nantuo Glaciation: Evidence from the Cryogenian Nantuo Formation in the Yangtze Block, South China[J]. Precambrian Research, 2018, 310: 243-255.
[29] Li Z X, Li X H, Kinny P D, et al. The breakup of Rodinia: Did it start with a mantle plume beneath South China?[J]. Earth and Planetary Science Letters, 1999, 173(3): 171-181.
[30] 郑永飞. 新元古代岩浆活动与全球变化[J]. 科学通报,2003,48(16):1705-1720.

Zheng Yongfei. Neoproterozoic magmatic activity and global change[J]. Chinese Science Bulletin, 2003, 48(16): 1705-1720.
[31] 王剑,刘宝珺,潘桂棠. 华南新元古代裂谷盆地演化:Rodinia超大陆解体的前奏[J]. 矿物岩石,2001,21(3):135-145.

Wang Jian, Liu Baojun, Pan Guitang. Neoproterozoic rifting history of South China significance to Rodinia breakup[J]. Journal of Mineralogy and Petrology, 2001, 21(3): 135-145.
[32] 尹崇玉,王砚耕,唐烽,等. 贵州松桃南华系大塘坡组凝灰岩锆石SHRIMP Ⅱ U-Pb年龄[J]. 地质学报,2006,80(2):273-278.

Yin Chongyu, Wang Yangeng, Tang Feng, et al. SHRIMP II U-Pb zircon date from the Nanhuan Datangpo Formation in Songtao county, Guizhou province[J]. Acta Geologica Sinica, 2006, 80(2): 273-278.
[33] Zhao S H, Jiang G Q, Zhang J M, et al. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in South China: Constraints on Late Neoproterozoic glaciations[J]. Geology, 2005, 33(6): 473-476.
[34] 朱祥坤,彭乾云,张仁彪,等. 贵州省松桃县道坨超大型锰矿床地质地球化学特征[J]. 地质学报,2013,87(9):1335-1348.

Zhu Xiangkun, Peng Qianyun, Zhang Renbiao, et al. Geological and geochemical characteristics of the Daotuo super-large manganese ore deposit, at Songtao country in Guizhou province[J]. Acta Geologica Sinica, 2013, 87(9): 1335-1348.
[35] Wang J, Li Z X. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1/2/3/4): 141-158.
[36] 戴传固,张慧,王敏. 试论黔东及邻区大地构造相特征[J]. 贵州地质,2006,23(3):217-222.

Dai Chuangu, Zhang Hui, Wang Min. Characteristics of architectural facies in East Guizhou and its neighboring areas[J]. Guizhou Geology, 2006, 23(3): 217-222.
[37] Zhang K, Zhu X K, Yan B. A refined dissolution method for rare earth element studies of bulk carbonate rocks[J]. Chemical Geology, 2015, 412: 82-91.
[38] Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect[J]. Contributions to Mineralogy and Petrology, 1996, 123(3): 323-333.
[39] 李定龙. 皖北奥陶系碳酸盐岩稀土元素地球化学特征及其古岩溶意义[J]. 地学前缘,2000,7(2):353-365.

Li Dinglong. REE geochemical features of carbonate rocks and its paleokarst significance in the Ordovician in northern Anhui[J]. Earth Science Frontiers, 2000, 7(2): 353-365.
[40] 樊连杰,裴建国,赵良杰,等. 利用ICP-MS研究桂林寨底地下河系统中碳酸盐岩稀土元素特征及其形成环境[J]. 岩矿测试,2016,35(3):251-258.

Fan Lianjie, Pei Jianguo, Zhao Liangjie, et al. Rare earth element composition of carbonate rocks afforded by ICP-MS and its formation environment of the Zhaidi underground river in Guilin[J]. Rock and Mineral Analysis, 2016, 35(3): 251-258.
[41] Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater[J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725.
[42] Lawrence M G, Greig A, Collerson K D, et al. Rare earth element and yttrium variability in South East Queensland waterways[J]. Aquatic Geochemistry, 2006, 12(1): 39-72.
[43] Sholkovitz E R, Landing W M, Lewis B L. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater[J]. Geochimica et Cosmochimica Acta, 1994, 58(6): 1567-1579.
[44] Holser W T. Evaluation of the application of rare-earth elements to paleoceanography[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132(1/2/3/4): 309-323.
[45] Zhao Y Y, Zheng Y F. Marine carbonate records of terrigenous input into Paleotethyan seawater: Geochemical constraints from Carboniferous limestones[J]. Geochimica et Cosmochimica Acta, 2014, 141: 508-531.
[46] Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557-1565.
[47] Nothdurft L D, Webb G E, Kamber B S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, western Australia: Confirmation of a seawater REE proxy in ancient limestones[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 263-283.
[48] Freslon N, Bayon G, Toucanne S, et al. Rare earth elements and neodymium isotopes in sedimentary organic matter[J]. Geochimica et Cosmochimica Acta, 2014, 140: 177-198.
[49] Bau M, Dulski P. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater[J]. Chemical Geology, 1999, 155(1/2): 77-90.
[50] Tepe N, Bau M. Behavior of rare earth elements and yttrium during simulation of arctic estuarine mixing between glacial-fed river waters and seawater and the impact of inorganic (nano-)particles[J]. Chemical Geology, 2016, 438: 134-145.
[51] Haley B A, Klinkhammer G P, McManus J. Rare earth elements in pore waters of marine sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265-1279.
[52] Swart P K. The geochemistry of carbonate diagenesis: The past, present and future[J]. Sedimentology, 2015, 62(5): 1233-1304.
[53] Hannigan R E, Sholkovitz E R. The development of middle rare earth element enrichments in freshwaters: Weathering of phosphate minerals[J]. Chemical Geology, 2001, 175(3/4): 495-508.
[54] Nozaki Y, Zhang J, Amakawa H. The fractionation between Y and Ho in the marine environment[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 329-340.
[55] Alibo D S, Nozaki Y. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4): 363-372.
[56] Taylor S R, McLennan S M, Armstrong R L, et al. The composition and evolution of the continental crust: Rare earth element evidence from sedimentary rocks [and discussion][J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1981, 301(1461): 381-399.
[57] Wallace M W, Hood A V, Shuster A, et al. Oxygenation history of the Neoproterozoic to Early Phanerozoic and the rise of land plants[J]. Earth and Planetary Science Letters, 2017, 466: 12-19.
[58] Laakso T A, Schrag D P. A small marine biosphere in the Proterozoic[J]. Geobiology, 2019, 17(2): 161-171.
[59] Canfield D E, Poulton S W, Narbonne G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5808): 92-95.